Study on the Impact Characteristics of Submerged CO2 and O2 Mixed Injection (S-COMI) in EAF Steelmaking

  • Guangsheng WeiEmail author
  • Rong Zhu
  • Tianping Tang
  • Kai Dong
  • Xuetao Wu


A new type of oxygen-supplying technology was developed for electric arc furnace (EAF) steelmaking using submerged CO2 and O2 mixed injection (S-COMI). S-COMI injects O2 into the molten steel bath directly by a submerged injector installed in the furnace bed; so the metallurgical reactions can be accelerated with a high utilization ratio of oxygen. However, there has been limited research on the impact characteristics of the S-COMI submerged gas jet in EAF steelmaking. In this study, water model experiments and numerical simulations were carried out to analyze the submerged gas jet behavior, and a theoretical model was built to depict the axis trajectory of submerged gas jet in the liquid bath. The numerical results were validated against the water model experiments to show that the gas flow rate and the installed angle have a significant influence on the jet impact characteristics. The results show that as the gas flow rate increases, the horizontal and vertical penetration distances increase; as the installed angle increases, the horizontal penetration distance increases while the vertical penetration distance decreases. In addition, the erosion mechanism of the element around the submerged injector exit was studied. As the installed angle increases, the velocity component in the vertical direction increases, the fluid flow is accelerated, and the wall shear stress of the underpart of the injector element increases. Therefore, the erosion rate of the upper part of the element decreases, while that of the underpart increases.



The authors would like to express their thanks for the support by the National Nature Science Foundation of China (Nos. 51734003 and 51334001).


  1. 1.
    B. Lee and I. Sohn: JOM, 2014, vol. 66, pp. 1581-94.CrossRefGoogle Scholar
  2. 2.
    G. Wei, R. Zhu, K. Dong, G. Ma and T. Cheng: Metallurgical and Materials Transactions B, 2016, vol. 47, pp. 3066-79.CrossRefGoogle Scholar
  3. 3.
    F. Memoli, C. Mapelli, P. Ravanelli, M. Corbella: ISIJ International, 2004, vol. 44, pp. 1342-49.CrossRefGoogle Scholar
  4. 4.
    G. Ma, R. Zhu, K. Dong, Z. Li, R. Liu, L. Yang and G. Wei: Ironmaking & Steelmaking, 2016, vol.29, pp. 594-99.CrossRefGoogle Scholar
  5. 5.
    G. Wei, R. Zhu, X. Wu, K. Dong, L. Yang and R. Liu: JOM, 2018, vol. 70, pp. 969-76.CrossRefGoogle Scholar
  6. 6.
    G. Wei, R. Zhu, T. Cheng, K. Dong, L. Yang, T. Tang and X. Wu: ISIJ International, 2018, vol. 58, pp. 842-51.CrossRefGoogle Scholar
  7. 7.
    D. Muñoz-Esparza, J. M. Buchlin, K. Myrillas, R. Berger: Applied Mathematical Modelling, 2012, vol. 36, pp. 2687-2700.CrossRefGoogle Scholar
  8. 8.
    M. Alam, G. Irons, G. Brooks, A. Fontana, J. Naser: ISIJ Int., 2011, vol. 51, pp. 1439-47.CrossRefGoogle Scholar
  9. 9.
    G. Wei, R. Zhu, T Cheng, K. Dong, L. Yang and X. Wu: Metallurgical & Materials Transactions B, 2018, vol. 49, pp. 361-74.CrossRefGoogle Scholar
  10. 10.
    M. Lee, V. Whitney, N. Molloy: Scandinavian Journal of Metallurgy, 2010, vol. 30, pp.330-36.CrossRefGoogle Scholar
  11. 11.
    J. Solórzano-López, R. Zenit, M. A. Ramírez-Argáez: Applied Mathematical Modelling, 2011, vol. 35, pp. 4991-5005.CrossRefGoogle Scholar
  12. 12.
    Irons G A and Guthrie R I L: Metallurgical & Materials Transactions B, 1978, vol. 9, pp. 101-10.CrossRefGoogle Scholar
  13. 13.
    Ma J, Zhou P and Cheng W: Experimental Thermal & Fluid Science, 2016, vol. 75, pp. 220-27.CrossRefGoogle Scholar
  14. 14.
    Oryall G N and Brimacombe J K: Metallurgical Transactions B, 1976, vol. 7, pp. 391-403.CrossRefGoogle Scholar
  15. 15.
    Hoefele E O and Brimacombe J K: Metallurgical Transactions B, 1979, vol. 10, pp. 631-48.CrossRefGoogle Scholar
  16. 16.
    S. H. Zhan, C. B. Lai and T. Hsiao: J. CENT. SOUTH UNIV. TECHNOL., 2003, Vol. 32, pp. 148-151.Google Scholar
  17. 17.
    Tilliander A, Jonsson L T I, Jönsson P G: Steel Research International, 2014, vol. 85, pp. 376-87.CrossRefGoogle Scholar
  18. 18.
    Andersson N Å I, Tilliander A, Jonsson L T I, Jönsson P G: Steel Research International, 2012, vol. 83, pp. 1039-52.CrossRefGoogle Scholar
  19. 19.
    Tilliander A, Jonsson T L I, Jonsson P G: ISIJ International, 2007, vol. 44, pp. 326-33.CrossRefGoogle Scholar
  20. 20.
    Wei J H, He Y, Shi G M: Steel Research International, 2011, vol. 82, pp. 693–702.CrossRefGoogle Scholar
  21. 21.
    Odenthal H J, Thiedemann U, Falkenreck U, J Schlueter: Metallurgical & Materials Transactions B, 2010, vol. 41, pp. 396-413.CrossRefGoogle Scholar
  22. 22.
    Wei J H, Ma J C, Fan Y Y: Ironmaking & Steelmaking, 2013, vol. 26, pp. 363-71.CrossRefGoogle Scholar
  23. 23.
    Visuri V V, Järvinen M, Kärnä A, Sulasalmi P, Heikkinen E P: Metallurgical & Materials Transactions B, 2017, vol. 48, pp.1868-84.CrossRefGoogle Scholar
  24. 24.
    C. W. Hirt and B. D. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201-205.CrossRefGoogle Scholar
  25. 25.
    Q. Li, M. Li, S. Kuang and Z. Zou: Metall. Trans. B, 2015, vol. 46B, pp. 1494-1509.CrossRefGoogle Scholar
  26. 26.
    B.E. Launder and D.B. Spalding: Lectures in Mathematical Model of Turbulence, Academic Press, London, 1972, pp. 124-129.Google Scholar
  27. 27.
    Heinz S: Physics of Fluids, 2003, vol. 15, pp. 3580-83.CrossRefGoogle Scholar
  28. 28.
    Abdol-Hamid K S, Pao S P, Massey S J: Transactions of the ASME-I-Journal of Fluids Engineering, 2004, vol. 126, pp. 844-50.CrossRefGoogle Scholar
  29. 29.
    Alam M, Naser J, Brooks G: Metallurgical and Materials Transactions B, 2010, vol. 41, pp. 636-45.CrossRefGoogle Scholar
  30. 30.
    Sumi I, Kishimoto Y, Kikuchi Y: ISIJ international, 2006, vol. 46, pp. 1312-17.CrossRefGoogle Scholar
  31. 31.
    Gulawani S S, Deshpande S S, Joshi J B: Industrial & Engineering Chemistry Research, 2007, vol. 46, pp. 3188-3218.CrossRefGoogle Scholar
  32. 32.
    Z. Xiao and S. Zhan: The Chinese Journal of Process Engineering, 2006, vol. 6, pp. 43-46.Google Scholar
  33. 33.
    F. Liu, P. Li, H. Wang et al.: Industrial Heating, 2017, vol. 46, pp. 14-18.Google Scholar
  34. 34.
    X.Han, Y. Peng and Z. Xiao: Journal of Northeastern University, 1994, vol. 15, pp. 145-148.Google Scholar
  35. 35.
    G. Ma: The application fundamental research on combined blowing of 70t EAF in Xining special steel. University of Science and Technology Beijing, Beijing, 2016, pp. 100-108.Google Scholar
  36. 36.
    Aoki T: Tetsu-to-Hagane, 2009, vol. 76, pp. 1996-2003.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Guangsheng Wei
    • 1
    • 2
    Email author
  • Rong Zhu
    • 1
    • 2
  • Tianping Tang
    • 1
  • Kai Dong
    • 1
    • 2
  • Xuetao Wu
    • 1
    • 2
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.Beijing Key Laboratory of Research Center of Special Melting and Preparation of High-End Metal MaterialsUniversity of Science and Technology BeijingBeijingP.R. China

Personalised recommendations