Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 324–336 | Cite as

Influence of Iron Ore Addition on Metallurgical Reaction Behavior of Iron Coke Hot Briquette

  • Hongtao Wang
  • Mansheng ChuEmail author
  • Wei Zhao
  • Zhenggen LiuEmail author
  • Jue Tang


Utilization of iron coke hot briquette (ICHB) has been considered to be one effective countermeasure to achieve low-carbon blast furnace. Before its actual application, a series of extensive fundamental investigations on the ICHB are required. In this study, the influence of iron ore addition on the metallurgical reaction behavior of ICHB made from carbonizing coal–iron ore composite agglomeration were investigated based on Chinese raw material conditions, and the corresponding mechanisms were revealed. The results show that the addition of iron ore concentrate leads to the degradation of the compressive strength and drum strength of ICHB, but they are maintained at a relatively high level. Furthermore, by increasing the addition ratio of iron ore from 0 to 20 pct, the density of ICHB is enhanced from 1413 to 1637 kg/m3, and the porosity is increased from 8.03 to 12.84 pct, and the optical texture index (OTI) is reduced from 58.1 to 25.3. The phase composition of ICHB mainly consists of C, Fe, SiO2, Fe3O4, and FeO after the addition of the iron ore concentrate. Moreover, the reactivity of ICHB is accelerated from 46.74 to 69.54 pct due to the catalytic effects of metallic iron and iron oxide, which worked as oxygen transfer carriers, while the post-reaction strength is reduced from 74.08 to 36.81 pct. In addition, the starting temperature of the ICHB gasification reaction is decreased remarkably from 919 °C to 839 °C. The activation energy (Ea) for the gasification reaction under nonisothermal conditions is reduced from 312.78 to 249.83 kJ/mol, and the preexponential factor (A) shows a decreasing trend as well. Simultaneously, Ea and A display the kinetic compensation effect and present a good linear relationship.



This study was financially supported by the National Natural Science Foundation of China (U1808212), the China Postdoctoral Science Foundation (2016M601321), and the Fundamental Research Funds of the Central Universities of China (N162503003).


  1. 1.
    X. Xing, H. Rogers, G.Q. Zhang, K. Hockings, P. Zulli, A. Deev, J. Mathieson, and O. Ostrovski: Fuel Process. Technol., 2017, vol. 157, pp. 42-51.CrossRefGoogle Scholar
  2. 2.
    W. Xu, W. Cao, T. Zhu, Y. Li, and B. Wan: Steel Res. Int., 2015, vol. 86, pp. 1063-1072.CrossRefGoogle Scholar
  3. 3.
    Z. Zhang, J. Meng, L. Guo, and Z. Guo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 467-484.CrossRefGoogle Scholar
  4. 4.
    K. Xu: Iron Steel, 2010, vol. 45, pp. 1-12.Google Scholar
  5. 5.
    H. M. Ahmed, N. Viswanathan and B. Bjorkman: Steel Res. Int., 2014, vol. 85, pp. 293-306.CrossRefGoogle Scholar
  6. 6.
    P. Kowitwarangkul, A. Babich and D. Senk: Steel Res. Int., 2014, vol. 85, pp. 1501-1509.CrossRefGoogle Scholar
  7. 7.
    C. Y. Narita, M. B. Mourao and C. Takano: Ironmak. Steelmak., 2015, vol. 42, pp. 548-552.CrossRefGoogle Scholar
  8. 8.
    S. Nomura, M. Naito, and K. Yamaguchi: ISIJ Int., 2007, vol. 47, pp. 831-839.CrossRefGoogle Scholar
  9. 9.
    S. Nomura, H. Ayukawa, H. Kitaguchi, T. Tahara, S. Matsuzaki, M. Natio, S. Koizumi, Y. Ogata, T. Nakayama, and T. Abe: ISIJ Int., 2005, vol. 45, pp. 316-324.CrossRefGoogle Scholar
  10. 10.
    H. Yokoyama, K. Higuchi, T. Ito, and A. Oshio: ISIJ Int., 2012, vol. 52, pp. 2000-2006.CrossRefGoogle Scholar
  11. 11.
    A. Takashi, F. Kiyoshi, and F. Hidekazu: JFE Tech. Rep., 2009, vol. 13, pp. 1-6.Google Scholar
  12. 12.
    M. Sato, H. Matsuno, and K. Ishii: Asia Steel Int. Conf., The Iron and Steel Institute of Japan, Yokohama, Janpan, 2015, pp. 12-13.Google Scholar
  13. 13.
    H. Wang, W. Zhao, M. Chu, C. Feng, Z. Liu, and J. Tang: J. Iron Steel Res. Int., 2017, vol. 24, pp. 751-769.CrossRefGoogle Scholar
  14. 14.
    K. Takeda, T. Anyashiki, T. Sato, N. Oyama, S. Watakabe, and M. Sato: Steel Res. Int., 2011, vol. 82, pp. 512-520.CrossRefGoogle Scholar
  15. 15.
    K. Higuchi, S. Nomura, K. Kunitomo, H. Yokoyama, and M. Naito: ISIJ Int., 2011, vol. 51, pp. 1308-1315.CrossRefGoogle Scholar
  16. 16.
    S. Nomura, K. Higuchi, K. Kunitomo, and M. Naito: ISIJ Int., 2010, vol. 50, pp. 1388-1395.CrossRefGoogle Scholar
  17. 17.
    Y. Yamazaki, K. Hiraki, T. Kanai, X. Zhang, Y. Matsushita, M. Shoji, H. Aoki, and T. Miura: J. Therm. Sci. Technol., 2011, vol. 6, pp. 278-288.CrossRefGoogle Scholar
  18. 18.
    World Steel Association, Blast Furnace Iron Production 1980-2016, 2017.Google Scholar
  19. 19.
    H. Wang, M. Chu, W. Zhao, R. Wang, Z. Liu, and J. Tang: Ironmak. Steelmak., 2016, vol. 43, pp. 571-580.CrossRefGoogle Scholar
  20. 20.
    H.T. Wang, M.S. Chu, W. Zhao, and Z.G. Liu: J. Northeastern Univ. Nat. Sci., 2016, vol. 37, pp. 810-814.Google Scholar
  21. 21.
    H.T. Wang, M.S. Chu, W. Zhao, and Z.G. Liu: J. Northeastern Univ. Nat. Sci., 2016, vol. 37, pp. 1108-1112.Google Scholar
  22. 22.
    ASTM D5314. Standard method for measuring coke reactivity index (CRI) and coke strength after reaction (CSR).Google Scholar
  23. 23.
    H.T. Wang, W. Zhao, M.S. Chu, Z.G. Liu, J. Tang, and Z.W. Ying: Powder Technol., 2018, vol. 328, pp. 318-328.CrossRefGoogle Scholar
  24. 24.
    Y. Mochizuki, M. Nishio, N. Tsubouchi, and T. Akiyama: Fuel Process. Technol., 2016, vol. 142, pp. 287-295.CrossRefGoogle Scholar
  25. 25.
    N.A. El-Hussiny, and M.E.H. Shalabi: Powder Technol., 2011, vol. 205, pp. 217-223.CrossRefGoogle Scholar
  26. 26.
    P. Wang, S. Yu, H. Long, R. Wei, Q. Meng, and Y. Zhang: Ironmak. Steelmak., 2017, vol. 44, pp. 595-600.CrossRefGoogle Scholar
  27. 27.
    ASTM D5061. Microscopical determination of the textural components of metallurgical coke.Google Scholar
  28. 28.
    R.J. Gray, and K.F. Devanney: J. Coal Geol., 1986, vol. 6, pp. 277-297.CrossRefGoogle Scholar
  29. 29.
    Z.Z. Yao, and M.D. Zheng: Cokmaking, Metallurgical Industry Publishers, Beijing, 2012, pp. 35-36.Google Scholar
  30. 30.
    Q. Lv, Y. Wang, H.S. Xie, X.J. Liu, and Y.J. Li, China Metall., 2016, vol. 26, pp. 8-11.Google Scholar
  31. 31.
    B.D. Flores, A.G. Borrego, M.A. Diez, G.L.R.D. Silva, V.Zymla, A.C.F. Vilela, and E. Osório: Fuel Process. Technol., 2017, vol. 164, pp. 13-23.CrossRefGoogle Scholar
  32. 32.
    B.D. Flores, A. Guerrero, I.V. Flores, A.G. Borrego, M.A. Díez, E. Osório, and A.C.F. Vilela: Fuel Process. Technol., 2017, vol. 155, pp. 238-245.CrossRefGoogle Scholar
  33. 33.
    Y. Tanaka, T. Ueno, K. Okumura, and S. Hayashi: ISIJ Int., 2011, vol. 51, pp. 1240-1246.CrossRefGoogle Scholar
  34. 34.
    S. Nomura, H. Terashima, E. Sato, and M. Naito: ISIJ Int., 2007, vol. 47, pp. 823-830.CrossRefGoogle Scholar
  35. 35.
    J.P. Wang, Q.A. Xie, L.Q. Yan, J.A. Chen, J.S. Hu, and Y.H. Liang: Coal Quality Technol., 2013, vol. 5, pp. 1-6.Google Scholar
  36. 36.
    J.L. Zhang, J. Guo, G.W. Wang, L.M. Zhang, T. Xu, and C.L. Zheng: Iron Steel, 2016, vol. 51, pp. 22-29.Google Scholar
  37. 37.
    C. Barriocanal, M.A. Díez, R. Alvarez, M.D. Casal, and C.S. Canga, Anal. Appl. Pyrolysis, 2003, vol. 67, pp. 23-40.CrossRefGoogle Scholar
  38. 38.
    M.J.G. Alonso, D. Alvarez, A.G. Borrego, R. Menéndez, and G. Marbán: Energy Fuel, 2001, vol. 15, pp. 413-428.CrossRefGoogle Scholar
  39. 39.
    K. Watanabe, S. Ueda, R. Inoue, and T. Ariyama: ISIJ Int., 2010, vol. 50, pp. 524-530.CrossRefGoogle Scholar
  40. 40.
    Y. Yamamoto, Y. Kashiwaya, S. Miura, M. Nishimura, K. Katou, S. Nomura, M. Kubota, K. Kunimoto, and M. Naito, Tetsu-to-Hagané, 2010, vol. 96, pp. 297-304.CrossRefGoogle Scholar
  41. 41.
    A.P. Dhupe, A.N. Gokarn, and L.K. Doraiswamy: Fuel, 1991, vol. 70, pp. 839-844.CrossRefGoogle Scholar
  42. 42.
    P. Li, X.G. Bi, S.Z. Shi, H.X. Zhang, and J.D. Zhou: J. Iron Steel Res., 2015, vol. 27, pp. 10-15.Google Scholar
  43. 43.
    X.L. Wang: Ferrous Metallurgy (Ironmaking), Metallurgical Industry Press, Beijing, 2008, pp. 200-201.Google Scholar
  44. 44.
    H. Shi, J. Huang, and L.R. Song: J. Iron Steel Res., 2016, vol. 28, pp. 35-39.Google Scholar
  45. 45.
    A.O. Oyedun, C.Z. Tee, S. Hanson, and C.W. Hui: Fuel Process. Technol., 2014, vol. 128, pp. 471-481.CrossRefGoogle Scholar
  46. 46.
    C. Popescu, and E. Segal: Int. J. Chem. Kinet., 1998, vol. 30, pp. 313-327.CrossRefGoogle Scholar
  47. 47.
    X.J. Zhang, D.J. Wiebren, and P. Fernando: Biomass Bioenergy, 2009, vol. 33, pp. 1435-1441.CrossRefGoogle Scholar
  48. 48.
    K.J. Li, J.L. Zhang, Z.J. Liu, X.J. Ning, and T.J. Yang: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 5737-5748.CrossRefGoogle Scholar
  49. 49.
    A.W. Coats, and J.P. Redfern: Nature, 1964, vol. 201, pp. 68-69.CrossRefGoogle Scholar
  50. 50.
    W.J. Duan, Q.B. Yu, H.Q. Xie, Q. Qin: Energy, 2017, vol. 135, pp. 317-326CrossRefGoogle Scholar
  51. 51.
    J.G. Shao, R. Yan, H.P. Chen, H.P. Yang, and D.H. Lee: Fuel Process. Technol., 2010, vol. 91, pp. 1113-1118.CrossRefGoogle Scholar
  52. 52.
    M.V. Kok: Fuel Process. Technol., 2011, vol. 92, pp. 1026-1031.CrossRefGoogle Scholar
  53. 53.
    A.M. Cortés, and A.V. Bridgwater: Fuel Process. Technol., 2015, vol. 138, pp. 184-193.CrossRefGoogle Scholar
  54. 54.
    S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli: Thermochim. Acta, 2011, vol. 520, pp. 1-19.CrossRefGoogle Scholar
  55. 55.
    Y.T. Kim, D.K. Seo, and J. Hwang: Energy Fuels, 2011, vol. 25, pp. 5044-5054.CrossRefGoogle Scholar
  56. 56.
    B.B. Uzun, and E. Yaman: J. Energy Inst., 2016, vol. 9, pp. 1-13.Google Scholar
  57. 57.
    G. Skodras, G. Nenes, and N. Zafeiriou: Appl. Therm. Eng., 2015, vol. 74, pp. 111-118.CrossRefGoogle Scholar
  58. 58.
    M.C. Wilson, and A.K. Galwey: Nature, 1973, vol. 243, pp. 402-404.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations