Advertisement

Deoxidation Mechanism in Reduced Titanium Powder Prepared by Multistage Deep Reduction of TiO2

  • Shi-gang Fan
  • Zhi-he Dou
  • Ting-an Zhang
  • Yan Liu
  • Li-ping Niu
Article
  • 42 Downloads

Abstract

There are technical bottlenecks in the preparation of metallic titanium powder by conventional thermal reduction of TiO2 with calcium, magnesium, or other metals, such as low efficiency and incomplete deoxidation. Based on the thermodynamic equilibrium characteristics of the step-by-step reduction of TiO2, a comparative study method was used, and the thermodynamic and kinetic differences between thermal reduction reactions of TiO2 with magnesia and calcium were investigated in this paper. Considering the difference in the electronegativity characteristics between magnesium and calcium, a new idea was put forward that the primary reduction product is prepared through a primary reduction process of TiO2 in the form of magnesiothermic self-propagating high-temperature synthesis (SHS), and then the reduced titanium powder is obtained through the primary reduction product for a deep calcium-thermal reduction reaction. The reduction degree and mechanism of TiO2 during the primary magnesium thermal reaction and deoxidation mechanism of primary reduction products in different deep reduction modes were investigated in this paper. The results showed that it is more conducive to undergo complete deoxygenation such that the primary reduction product is first acid impregnated, followed by deep calciothermic reduction. High-purity reduced titanium powder with a final oxygen content of only 0.21 pct and purity greater than 99.0 pct was obtained.

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (51422403 and 51504064) and the Fundamental Research Funds for the Central Universities (N162505002 and N172506009).

References

  1. 1.
    M.A. Hunter: J AM CHEM SOC, 1910, vol. 32, pp. 330-336.CrossRefGoogle Scholar
  2. 2.
    D.J. Fray: INT MATER REV, 2008, vol. 53, pp. 317-324.CrossRefGoogle Scholar
  3. 3.
    W.J. Kroll: J ELECTROCHEM SOC, 1940, vol. 78, pp. 34-47.Google Scholar
  4. 4.
    S.J. Gerdemann: Adv Mater Process, 2001, 159, 41–43.Google Scholar
  5. 5.
    Grant Crowley: Adv. Mater. Process, 2003, vol. 161, pp. 25-27.Google Scholar
  6. 6.
    M.V. Ginatta: US Patent, 1987, N4670121.Google Scholar
  7. 7.
    M.V. Ginatta: US Patent, 1991, N5015342.Google Scholar
  8. 8.
    R. B. Elliott Guy: JOM, 1998, vol. 50, pp.48-49.CrossRefGoogle Scholar
  9. 9.
    R. O. Suzuki, Takuya N. Harada, and T. Matsunaga: Metall. Mater. Trans. B, 1999, vol. 30, pp. 403-410.CrossRefGoogle Scholar
  10. 10.
    S.Q. Jiao, H.M. Zhu: J ALLOY COMPD, 2007, vol. 438, pp. 243-246.CrossRefGoogle Scholar
  11. 11.
    G.Z. Chen, D. J. Fray, and T. W. Farthing: Nature, 2000, vol. 407, pp. 361-364.CrossRefGoogle Scholar
  12. 12.
    D. J. Fray: JOM, 2001, vol. 53, pp. 26-31.CrossRefGoogle Scholar
  13. 13.
    G.Z. Chen, D.J. Fray, and T.W. Farthing: Metall. Mater. Trans. B, 2001, vol. 32, pp. 1041-1049.CrossRefGoogle Scholar
  14. 14.
    G.Z. Chen, D.J. Fray: Light Metals, J. L. Anjier, eds., TMS, Warrendale, PA, 2001, pp. 1147–51.Google Scholar
  15. 15.
    K.Ono, R.O. Suzuki: JOM, 2002, vol. 54, pp.59-61.CrossRefGoogle Scholar
  16. 16.
    A.Takashi, O.H. Toru: J PHYS CHEM SOLIDS, 2005, vol.66, pp. 410-413.CrossRefGoogle Scholar
  17. 17.
    Z.G. Zhao, X.G. Lu, and W.Z. Ding.: Shanghai Metals, 2005, 27, 40-43.Google Scholar
  18. 18.
    B Uday, C. Pal and Adam, Powell IV: JOM, 2007, vol. 59, pp.44-49.CrossRefGoogle Scholar
  19. 19.
    H.M. Zhu, S.Q. Jiao, and X.F. Gu.: CN Patent, 2005, CN200510011684.Google Scholar
  20. 20.
    L. Zhang, S. Wang, S. Jiao: ELECTROCHIM ACTA, 2012, vol. 75, pp. 357-359.CrossRefGoogle Scholar
  21. 21.
    W. Kroll, Z. Anorg. Chem, 1937, vol. 234, pp. 234.Google Scholar
  22. 22.
    D. W. Rostron: US Patent, 1958, US2834667 A.Google Scholar
  23. 23.
    K.Ono, Katsutoshi, and S. Miyazaki.: J JPN I MET, 1985, vol. 49, pp.871-875.CrossRefGoogle Scholar
  24. 24.
    R O Suzuki, T H Okabe: MATER TRANS, 2007, vol. 31, pp.61-68.CrossRefGoogle Scholar
  25. 25.
    T Okabe, R.O Suzuki, and T Oishi: Tetsu-to-Hagane, 1991, 77, 93-99.CrossRefGoogle Scholar
  26. 26.
    T H Okabe, T Oishi, and K Ono: Metall. Mater. Trans. B, 1992, vol. 23, pp.583-590.CrossRefGoogle Scholar
  27. 27.
    O.H. Toru, O. Takashi, and M. Yoshitaka: J ALLOY COMPD, 2004, vol. 346, pp. 156-163.Google Scholar
  28. 28.
    H H. Nersisyan, H I Won, and C W Won: CHEM ENG J, 2014, vol. 235, pp. 67-74.CrossRefGoogle Scholar
  29. 29.
    J.G. Jia, B.Q.Xu, Xu Min: IRON STEEL VANADIUM TITANIUM, 2013, vol. 34, pp.1-6.Google Scholar
  30. 30.
    H.L Wan, B.Q. Xu, and Y.N. Dai: J CENT SOUTH UNIV, 2012, vol.19, pp. 2434-2439.CrossRefGoogle Scholar
  31. 31.
    H.L Wan, B.Q. Xu, and Y.N. Dai: JOURNAL OF FUNCTIONAL MATERIALS. 2012, vol. 06, pp. 700-707.Google Scholar
  32. 32.
    H.L Wan, B.Q. Xu, and Y.N. Dai: The Chinese Journal of Nonferrous Metals. 2012, vol. 22, pp. 2075-2081.Google Scholar
  33. 33.
    Y.S. Hong: JOM, 1998, vol. 50, pp. 50.Google Scholar
  34. 34.
    Z.A. Munir, J.B. Holt: Material Neurk, VCH, 1990, pp. 501.Google Scholar
  35. 35.
    J. Cai, W.L. Li, and B.L. Zhang: Materials Review, 1995, vol.05, pp. 39-42.Google Scholar
  36. 36.
    J.G. Jia, B.Q. Xu, and B. Yang: Key Engineering Materials. 2013, vol.551, pp. 25-31.CrossRefGoogle Scholar
  37. 37.
    T.A. Zhang, Z.H. Dou: Inorg Mater, 2006, 21, 583-590.Google Scholar
  38. 38.
    Z.H. Dou, T.A. Zhang, and Yan Liu: J RARE EARTH, 2011, vol.29, pp.986-989.CrossRefGoogle Scholar
  39. 39.
    Zhang, H.Y. Yu, and X.L. Pan: Journal of Materials and Metallurgy, 2015, vol. 14, pp.164-169.Google Scholar
  40. 40.
    R. Suzuki, K.Ono, and K. Teranuma: Metall. Mater. Trans. B, 2003, vol. 34, pp. 287-295.CrossRefGoogle Scholar
  41. 41.
    S.F. Liu, R.O. Suzuki, and K.Ono: J ALLOY COMPD, 1998, vol. 266, pp. 247-254.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Shi-gang Fan
    • 1
    • 2
  • Zhi-he Dou
    • 1
    • 2
  • Ting-an Zhang
    • 1
    • 2
  • Yan Liu
    • 1
    • 2
  • Li-ping Niu
    • 1
    • 2
  1. 1.School of MetallurgyNortheastern UniversityShenyangP.R. China
  2. 2.Key Laboratory of Ecological Metallurgy of Multimetal Intergrown Ores of Ministry of EducationShenyangP.R. China

Personalised recommendations