Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 271–281 | Cite as

Effect of Al2O3 Addition on Mineralogical Modification and Crystallization Kinetics of a High Basicity BOF Steel Slag

  • Chunwei LiuEmail author
  • Shuigen Huang
  • Bart Blanpain
  • Muxing Guo


Basic oxygen furnace (BOF) steel slag is a main byproduct that is produced during the converter steelmaking process. The volume instability and fast crystallization of BOF slag limits its added-value application. This article aims to understand the effect of Al2O3 on the mineralogical modification and crystallization kinetics of a high basicity BOF steel slag. Continuous cooling transformation and time–temperature–transformation curves were constructed to determine the crystallization characteristics of BOF slag. The critical cooling rate to vitrify the slag was experimentally obtained. The crystallization sequence was clarified by integrating in situ and post-mortem observations with thermodynamic calculations. The results suggest that the addition of Al2O3 can effectively remove free lime, decrease the melting point, and improve the glass formation ability of the high basicity BOF slag. Undercooling the slag is enhanced by increasing the cooling rate and/or adding Al2O3. By steering the addition of Al2O3 and the cooling rate, BOF slag can be modified to obtain a more amorphous phase, presenting an enhanced potential to be a binder for added-value applications.



This work was supported by the Agency for Innovation by Science and Technology of Belgium (IWT Grant No. 140514) and the China Scholarship Council (CSC, No. 201306080002).

Supplementary material

11663_2018_1465_MOESM1_ESM.pdf (164 kb)
Supplementary material 1 (PDF 163 kb)


  1. 1. Accessed 25 Feb 2018.
  2. 2. Accessed 23 Dec 2017.
  3. 3.
    3 J.M. Manso, J.A. Polanco, M. Losañez, and J.J. González: Cem. Concr. Compos., 2006, vol. 28, pp. 528–34.CrossRefGoogle Scholar
  4. 4.
    4 Y.J. Xue, S.P. Wu, H.B. Hou, and J. Zha: J. Hazard. Mater., 2006, vol. 138, pp. 261–8.CrossRefGoogle Scholar
  5. 5.
    5 P. Xue, A. Xu, D. He, Q. Yang, G. Liu, F. Engström, and B. Björkman: Constr. Build. Mater., 2016, vol. 122, pp. 567–76.CrossRefGoogle Scholar
  6. 6.
    6 K. Yokoyama, H. Kubo, K. Mori, H. Okada, S. Takeuchi, and T. Nagasaka: ISIJ Int., 2007, vol. 47, pp. 1541–8.CrossRefGoogle Scholar
  7. 7.
    7 S.A. Mikhail and A.M. Turcotte: Thermochim. Acta, 1995, vol. 263, pp. 87–94.CrossRefGoogle Scholar
  8. 8.
    8 G. Wang, Y.H. Wang, and Z.L. Gao: J. Hazard. Mater., 2010, vol. 184, pp. 555–60.CrossRefGoogle Scholar
  9. 9.
    9 R.M. Santos, D. Ling, A. Sarvaramini, M.X. Guo, J. Elsen, F. Larachi, G. Beaudoin, B. Blanpain, and T. Van Gerven: Chem. Eng. J., 2012, vol. 203, pp. 239–50.CrossRefGoogle Scholar
  10. 10.
    10 M. Morone, G. Costa, A. Polettini, R. Pomi, and R. Baciocchi: Miner. Eng., 2014, vol. 59, pp. 82–90.CrossRefGoogle Scholar
  11. 11.
    11 M. Salman, Ö. Cizer, Y. Pontikes, R.M. Santos, R. Snellings, L. Vandewalle, B. Blanpain, and K. Van Balen: Chem. Eng. J., 2014, vol. 246, pp. 39–52.CrossRefGoogle Scholar
  12. 12.
    12 H. Alanyali, M. Çöl, M. Yilmaz, and Ş. Karagöz: Int. J. Appl. Ceram. Technol., 2009, vol. 6, pp. 736–48.CrossRefGoogle Scholar
  13. 13.
    13 T.H. Su, H.J. Yang, Y.C. Lee, Y.H. Shau, E. Takazawa, M.F. Lin, J.L. Mou, and W.T. Jiang: Steel Res. Int., 2016, vol. 87, pp. 1511–1526.CrossRefGoogle Scholar
  14. 14.
    14 C.W. Liu, M.X. Guo, L. Pandelaers, B. Blanpain, and S.G. Huang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3237-40.CrossRefGoogle Scholar
  15. 15.
    15 D. Ionescu, T.R. Meadowcroft, and P.V. Barr: Adv. Cem. Res., 2001, vol. 13, pp. 21–30.CrossRefGoogle Scholar
  16. 16.
    16 A. Rai, J. Prabakar, C.B. Raju, and R.K. Morchalle: Constr. Build. Mater., 2002, vol. 16, pp. 489–94.CrossRefGoogle Scholar
  17. 17.
    17 S. Onisei, K. Lesage, B. Blanpain, and Y. Pontikes: J. Am. Ceram. Soc., 2015, vol. 9, pp. 2269–77.CrossRefGoogle Scholar
  18. 18.
    J. Provis and J.V. Deventer: Alkali Activated Materials: State-of-the-Art Report, Springer Science & Business Media, 2013, pp.11-13.Google Scholar
  19. 19.
    19 P. Duxson, J.L. Provis, G.C. Lukey, and J.S.J. van Deventer: Cem. Concr. Res., 2007, vol. 37, pp. 1590–7.CrossRefGoogle Scholar
  20. 20.
    20 J.N. Murphy, T.R. Meadowcroft, and P.V. Barr: Can. Metall. Q., 1997, vol. 36, pp. 315–31.CrossRefGoogle Scholar
  21. 21.
    21 A.S. Reddy, R.K. Pradhan, and S. Chandra: Int. J. Miner. Process., 2006, vol. 79, pp. 98–105.CrossRefGoogle Scholar
  22. 22.
    22 L. Kriskova, Y. Pontikes, L. Pandelaers, Ö. Cizer, P.T. Jones, K. Van Balen, and B. Blanpain: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1173–84.CrossRefGoogle Scholar
  23. 23.
    23 J.J. Liu, G. Chen, P.C. Yan, B. Blanpain, N. Moelans, and M.X. Guo: J. Cryst. Growth, 2014, vol. 402, pp. 1–8.CrossRefGoogle Scholar
  24. 24.
    24 I. Sohn and R. Dippenaar: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2083–94.CrossRefGoogle Scholar
  25. 25.
    25 Y. Kashiwaya, T. Nakauchi, K.S. Pham, S. Akiyama, and K. Ishii: ISIJ Int., 2007, vol. 47, pp. 44–52.CrossRefGoogle Scholar
  26. 26.
    26 Y.Q. Sun, Z.T. Zhang, L.L. Liu, and X.D. Wang: Energies, 2014, vol. 7, pp. 1673–84.CrossRefGoogle Scholar
  27. 27.
    27 Y.Q. Sun, H.W. Shen, H. Wang, X.D. Wang, and Z.T. Zhang: Energy, 2014, vol. 76, pp. 761–7.CrossRefGoogle Scholar
  28. 28.
    28 L.J. Zhou, W.L. Wang, F.J. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2011, vol. 43, pp. 354–62.Google Scholar
  29. 29.
    29 Y. Kashiwaya, C.E. Cicutti, A.W. Cramb, and K. Ishii: ISIJ Int., 1998, vol. 38, pp. 348–56.CrossRefGoogle Scholar
  30. 30.
    30 L.J. Zhou, W.L. Wang, R. Liu, and B.G. Thomas: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2013, vol. 44, pp. 1264–79.CrossRefGoogle Scholar
  31. 31.
    31 B. Jiang, W. Wang, I. Sohn, J. Wei, L. Zhou, and B. Lu: Metall. Mater. Trans. B., 2014, vol. 45, pp. 1057-67.CrossRefGoogle Scholar
  32. 32.
    32 J.H. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1961–72.CrossRefGoogle Scholar
  33. 33.
    33 J. Heulens, B. Blanpain, and N. Moelans: Chem. Geol., 2011, vol. 290, pp. 156–62.CrossRefGoogle Scholar
  34. 34.
    34 C.W. Bale, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: Calphad, 2002, vol. 26, pp. 189–228.CrossRefGoogle Scholar
  35. 35.
    35 D. Durinck, P.T. Jones, B. Blanpain, P. Wollants, G. Mertens, and J. Elsen: J. Am. Ceram. Soc., 2007, vol. 90, pp. 1177–85.CrossRefGoogle Scholar
  36. 36.
    36 I. Nishinohara, N. Kase, H. Maruoka, S. Hirai, and H. Eba: ISIJ Int., 2015, vol. 55, pp. 616–22.CrossRefGoogle Scholar
  37. 37.
    37 E.H. Swanson, H.E., Morris, M.C., Stinchfield, R.P. and Evans: Standard X-Ray Diffraction Powder Patterns, Sec.1, Washington, D.C., 1962, pp. 43.CrossRefGoogle Scholar
  38. 38.
    38 H. F. W. Taylor: Cement Chemistry, 2nd ed., Thomas Telford Publishing, London, 1997, pp. 24-26.CrossRefGoogle Scholar
  39. 39.
    39 S. El-Alfi, S. Abd-Aleem, and H. Eldidamony: Indian J. Eng. Mater. Sci., 2001, vol. 8, pp. 292–6.Google Scholar
  40. 40.
    40 K. Fukuda, T. Bessho, K. Matsunaga, and H. Yoshida: Cem. Concr. Res., 2004, vol. 34, pp. 1535–40.CrossRefGoogle Scholar
  41. 41.
    41 D. Turnbull: Contemp. Phys., 1969, vol. 10, pp. 473–88.CrossRefGoogle Scholar
  42. 42.
    42 S.H. Seok, S.M. Jung, Y.S. Lee, and D.J. Min: ISIJ Int., 2007, vol. 47, pp. 1090–6.CrossRefGoogle Scholar
  43. 43.
    D.R. Uhlmann and P.I.K. Onoratoo: 10th Proc. Lunar Planet. Sci. Conf., 1979, pp. 375–81.Google Scholar
  44. 44.
    44 H. Yinnon and D.R. Uhlmann: J. Non. Cryst. Solids, 1981, vol. 44, pp. 37–55.CrossRefGoogle Scholar
  45. 45.
    D.R. Uhlmann, H. Yinnon, and C.Y. Fang: Lunar Planet. Sci. Conf. Proc., 1982, vol. 12B, pp. 281–88.Google Scholar
  46. 46.
    46 F.F. Foit, R.L. Hooper, and P.E. Rosenberg: Am. Mineral., 1987, vol. 72, pp. 137–47.Google Scholar
  47. 47.
    47 N.L. Bowen, J.F. Schairer, and E. Posnjak: Am. J. Sci., 1933, vol. 26, pp. 193–284.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Chunwei Liu
    • 1
    • 2
    Email author
  • Shuigen Huang
    • 1
  • Bart Blanpain
    • 1
  • Muxing Guo
    • 1
  1. 1.Department of Materials EngineeringKU LeuvenLeuvenBelgium
  2. 2.National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations