Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 262–270 | Cite as

Hydrogen Plasma Smelting Reduction of Fe2O3

  • P. R. BeheraEmail author
  • B. Bhoi
  • R. K. Paramguru
  • P. S. Mukherjee
  • B. K. Mishra


The paper reports successful smelting reduction of iron ore (hematite) in thermal hydrogen plasma. A specially designed reactor with water cooled copper crucible and a plasma torch was used to demonstrate the process in 1-kg scale. The number of stoichiometric requirement of hydrogen is a better parameter, instead of time, for determining the rate of the process. This parameter, along with the degree of reduction, is also helpful to determine the degree of hydrogen utilization. The ratio of the height of the molten bath to the diameter of the reactor is found to be an important parameter for effective hydrodynamics and the resultant degree of reduction. This is also an important parameter for scaling up of the process.



The authors are thankful to the Ministry of Steel, Govt. of India to fund the research studies behind this innovative work and also express gratitude to the Director, CSIR-IMMT, Bhubaneswar for his kind and extended support and active participation throughout the research work.


  1. 1.
  2. 2.
    J.V.D. Stel: Development of ULCOS-blast furnace: working toward technology demonstration. IEAGHG/IETS Iron and Steel Industry CCUS and Process Integration Workshop, Tokyo, Japan, 4–7 November 2013. Accessed 06 June 2018.
  3. 3.
    ULCOS: HIsarna Smelter Technology. Accessed 14 Dec 2017.
  4. 4.
    ULCORED: Industrial Efficiency Technology Database. Accessed 14 Dec 2017.
  5. 5.
    Satyendra: Ispat Guru., 2015. Accessed 14 Dec 2017.
  6. 6.
    A. Hasanbeigi, L. Price, and M. Arens: Berkeley National Lab., 2013. Accessed 14 Dec 2017.
  7. 7.
  8. 8.
    H. Hiebler, J.F. Plaul: Metalurgija, 2004, vol. 43, pp. 155–162.Google Scholar
  9. 9.
    Lee, J. Jung, K. Kim, and S. Kim: The 157th ISIJ meeting, International Organized Sessions, Environment and Energy Technology/High Temperature Processes, Tokyo, 2009.Google Scholar
  10. 10.
    H.Y. Sohn: American Iron and Steel Institute. Accessed 14 Dec 2017.
  11. 11.
    A. Allanore, L. Yin, and D.R. Sadoway: Nature, 2013, vol. 497, pp. 353–356.CrossRefGoogle Scholar
  12. 12.
    Canadian Steel Producers Association. Accessed 14 Dec 2017; ArcelorMittal Brasil. Accessed 14 Dec 2017.
  13. 13.
    BAOSTEEL: Accessed 14 Dec 2017.
  14. 14.
    A. Züttel, A.A. Remhof, A. Borgschulte, and O. Friedrichs: Philos. Trans. R. Soc., 2010, vol. 368, pp. 3329–3342.CrossRefGoogle Scholar
  15. 15.
    A. Sorman: Doctoral thesis, Montanuniversitaet, Leoben, 1992.Google Scholar
  16. 16.
    A. Sorman, H. Hiebler, and H. Presslinger: International Conference on “New Smelting Reduction and Near Net Shape Casting Technologies for Steel”, 1990, vol. 1, pp. 57–74.Google Scholar
  17. 17.
    J.F. Plaul: Doctoral thesis, Montanuniversitaet, Leoben, 2005.Google Scholar
  18. 18.
    J.F. Plaul, W. Krieger, E. Baeck: Steel Res. Int., 2005, vol. 76, pp. 548–554.CrossRefGoogle Scholar
  19. 19.
    K. Badr: Doctoral thesis, Montanuniversitaet, Leoben, 2007.Google Scholar
  20. 20.
    K. Badr, E. Baeck, and W. Krieger: 18th International Symposium on Plasma Chemistry, August 26–31, Kyoto, Japan, 2007.Google Scholar
  21. 21.
    K. Badr, E. Baeck, W. Krieger: Steel Res. Int., 2007, vol. 78, pp. 275–280.CrossRefGoogle Scholar
  22. 22.
    P. Rajput, B. Bhoi, S. Sahoo, R.K. Paramguru, B.K. Mishra: Ironmak. Steelmak., 2013, vol. 40, pp. 61–68.CrossRefGoogle Scholar
  23. 23.
    P. Rajput, K.C. Sabat, R.K. Paramguru, B. Bhoi, B.K. Mishra: Ironmak. Steelmak., 2014, vol. 41, pp. 721–731.CrossRefGoogle Scholar
  24. 24.
    H.L. Gilles, C.W. Clump: Ind. Eng. Chem. Process Des. Dev., 1970, vol. 9, pp. 194–207.CrossRefGoogle Scholar
  25. 25.
    R.G. Gold, W.R. Sandall, P.G. Cheplick: Ironmak. Steelmak., 1977, vol. 1, pp. 10–14.Google Scholar
  26. 26.
    K. Akashi, R. Ishizuka, and T. Mutobe: Proceedings of the Fourth International Conference on Vacuum Metallurgy, 1974, vol. 3, pp. 165–169.Google Scholar
  27. 27.
    T. Nakamura, K. Shibata, and K. Takeda: Plasma Chem. Plasma Process., 1981, vol. 1, pp. 149–160.CrossRefGoogle Scholar
  28. 28.
    K. Kamiya and N. Kitahara: Trans. ISIJ, 1984, vol. 24, pp. 7–16.CrossRefGoogle Scholar
  29. 29.
    M. Lemperle and A. Weigel: Steel Res. Int., 1985, vol. 56, pp. 465–469.CrossRefGoogle Scholar
  30. 30.
    K.C. Sabat, P. Rajput, R.K. Paramguru, B. Bhoi, and B.K. Mishra: Plasma Chem. Plasma Process., 2014, vol. 34, pp. 1–23.CrossRefGoogle Scholar
  31. 31.
    K.C. Sabat, A. Murphy: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1561–1594.CrossRefGoogle Scholar
  32. 32.
    B. R. Sant, T.P. Prasad: Talanta, 1968, vol. 15, pp. 1483-1486.CrossRefGoogle Scholar
  33. 33.
    A.I. Vogel: A Text Book of Quantitative Inorganic Analysis Theory and Practice, Longmans, Green and Co., London, 1951.Google Scholar
  34. 34.
    BS ISO 5416: Direct Reduced Iron. Determination of Metallic Iron. Bromine-Methanol Titrimetric Method, 2006.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • P. R. Behera
    • 1
    • 2
    Email author
  • B. Bhoi
    • 2
  • R. K. Paramguru
    • 3
  • P. S. Mukherjee
    • 2
  • B. K. Mishra
    • 4
  1. 1.Centre for Sustainable Materials Research and Technology (SMaRT@UNSW), School of Materials Science and EngineeringUniversity of New South Wales (UNSW)SydneyAustralia
  2. 2.Advanced Materials Technology Department, Institute of Minerals and Materials TechnologyCouncil of Scientific and Industrial Research (CSIR-IMMT)BhubaneswarIndia
  3. 3.School of Mechanical Engineering, and Students Research CenterKIIT Deemed to be UniversityBhubaneswarIndia
  4. 4.Indian Institute of TechnologyGoaIndia

Personalised recommendations