Metallurgical and Materials Transactions B

, Volume 49, Issue 6, pp 3513–3521 | Cite as

Mechanism of Low-Temperature Reduction Degradation of Alumina-Containing Hematite Solid Solution Below 550 °C

  • Hui Guo
  • Xing-Min GuoEmail author


Low-temperature reduction degradation (LTRD) of sinter has an adverse effect on blast furnace permeability, and it is mainly caused by the stress produced in the reduction process of hematite. This stress is strongly influenced by alumina dissolved in hematite crystal lattice. In this work, the experiments were conducted to investigate the effect of alumina dissolved in hematite solid solution (Hss) on LTRD by reducing Hss below 550 °C. Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and optical microscope have been used to characterize the mass change and mineral change of samples, respectively. Jade software has been used to calculate the micro strain in magnetite for quantitatively studying the change of strain in reducing process. The results show that alumina was unfavorable to the reduction of Hss on thermodynamics, and the starting reduction temperature of Hss containing 6.0 mol pct alumina was 28 °C higher than that of pure hematite. According to the calculation on kinetics, the generation rate of stress was accelerated by dissolving alumina into hematite crystal lattice. The apparent activation energy of reduction reaction lowered from 47.89 to 28.07 kJ/mol with the increase of alumina content from 0.0 to 6.0 mol pct. The addition of alumina also increased the stress in the reduction products, and this stress was released in the form of LTRD.



The authors are grateful to the National Natural Science Foundation of China (U1460201 and No. 51774029) for the financial support of this research.


  1. 1.
    C. E. Loo and W. Leung: ISIJ Int., 2003, vol. 43, pp. 1393-402.CrossRefGoogle Scholar
  2. 2.
    Y. F. Guo and X. M. Guo: ISIJ Int., 2017, vol. 57, pp. 228-35.CrossRefGoogle Scholar
  3. 3.
    Q. D. Zhou: Iron Ore Agglomeration Theory and Technology, Beijing, 1989, pp. 9–12.Google Scholar
  4. 4.
    L. Lu, R. J. Holmes and J. R. Manuel: ISIJ Int., 2007, vol. 47, pp. 349-58.CrossRefGoogle Scholar
  5. 5.
    A. Cores, A. Babich and M. Muñiz: ISIJ Int., 2010, vol. 50, pp. 1089-98.CrossRefGoogle Scholar
  6. 6.
    N. Takeuchi, Y. Iwami and T. Higuchi: ISIJ Int., 2014, vol. 54, pp. 791-800.CrossRefGoogle Scholar
  7. 7.
    J. J. Dong, G. Wang and Y. G. Gong: Ironmak. Steelmak., 2015, vol. 42, pp. 34-40.CrossRefGoogle Scholar
  8. 8.
    L. H. Hsieh and J. A. Whiteman: ISIJ Int., 1993, vol. 33, pp. 462-73.CrossRefGoogle Scholar
  9. 9.
    L. S. Li, J. B. Liu and X. R. Wu: ISIJ Int., 2010, vol. 50, pp. 327-29.CrossRefGoogle Scholar
  10. 10.
    H. P. Pimenta and V. Seshadri: Ironmak. Steelmak., 2002, vol. 29, pp. 175-79.CrossRefGoogle Scholar
  11. 11.
    M. M. Hessien, Y. Kashiwaya and K. Ishil: Ironmak. Steelmak., 2008, vol 35, 191-204.CrossRefGoogle Scholar
  12. 12.
    Y. Yamaoka, S. Nagaoka and Y. Yamada: Trans. ISIJ, 1974, vol. 14, pp. 185-94.Google Scholar
  13. 13.
    J. M. F. Clout and J. R. Manuel: Iron Ore: Mineralogy, Processing and Environmental Sustainability, Elsevier, Woodhead Publishing, Cambridge, 2015, pp. 45-84.CrossRefGoogle Scholar
  14. 14.
    A. Muan and C. L. Gee: J. Am. Ceram. Soc., 1956, vol. 39, pp. 207-14.CrossRefGoogle Scholar
  15. 15.
    H. Y. Lee: J. Am. Ceram. Soc., 1995, vol. 78, pp. 2149-52.CrossRefGoogle Scholar
  16. 16.
    V. Reghavan: J. Phase Equilib. Diff., 2010, vol. 31, p. 367.CrossRefGoogle Scholar
  17. 17.
    I. Shigaki, M. Sawada and M. Maekawa: Trans. ISIJ, 1982, vol. 22, pp. 838-47.CrossRefGoogle Scholar
  18. 18.
    I. Shigaki, M. Sawada and N. Gennai: Trans. ISIJ, 1986, vol. 26, pp. 503-11.CrossRefGoogle Scholar
  19. 19.
    H. P. Pimenta and V. Seshadri: Ironmak. Steelmak., 2002, vol. 29, pp. 169-74.CrossRefGoogle Scholar
  20. 20.
    F. Matsuno, S. Nishikida and H. Ikesaki: Trans. ISIJ, 1984, vol. 24, pp. 1040-49.CrossRefGoogle Scholar
  21. 21.
    F. Matsuno, S. Nishikida and H. Ikesaki: Trans. ISIJ, 1984, vol. 24, pp. 275-83.CrossRefGoogle Scholar
  22. 22.
    Y. K. Rao: Metall. Mater. Trans. B, 1971, vol. 2, pp. 1439-47.Google Scholar
  23. 23.
    Y. K. Rao and M. Moinpour: Metall. Mater. Trans. B, 1983, vol. 14B, pp. 711-23.CrossRefGoogle Scholar
  24. 24.
    A. V. Bradshaw and A. G. Matyas: Metall. Mater. Trans. B, 1976, vol. 7B, pp. 81-87.CrossRefGoogle Scholar
  25. 25.
    A. A. EL-Geassy and M. I. Nasr (1990) ISIJ Int. J., 30: 417-25.CrossRefGoogle Scholar
  26. 26.
    R. Chaigneau and R. H. Heerema: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 503-11.CrossRefGoogle Scholar
  27. 27.
    Y. Kapelyushin, X. Xing and J. Q. Zhang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1175-85.CrossRefGoogle Scholar
  28. 28.
    Y. X. Hua: Kinetics of Metallurgical Processes, Beijing, 2004, pp. 10–12.Google Scholar
  29. 29.
    J. Y. Zhang: Physical Chemistry of Metallurgy, Beijing, 2009, pp. 154–56.Google Scholar
  30. 30.
    J. W. Huang and Z. Li: X-ray Diffraction of Polycrystalline Materials, Beijing, 2013, pp. 156–61.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP.R. China

Personalised recommendations