Metallurgical and Materials Transactions B

, Volume 49, Issue 6, pp 3007–3018 | Cite as

Effect of Partial Substitution of Mn for Ni on Mechanical Properties of Friction Stir Processed Hypoeutectic Al-Ni Alloys

  • Fatemeh Yousefi
  • Reza TaghiabadiEmail author
  • Saeid Baghshahi


In this study, the mechanical properties of as-cast and FSPed Al-2Ni-xMn alloys (x = 1, 2, and 4 wt pct) were investigated and compared with those of the as-cast and FSPed Al-4Ni alloy. According to the results, the substitution of 2 wt pct Mn for 2 wt pct Ni leads to the formation of fine Mn-rich intermetallics in the microstructure increasing the tensile strength, microhardness, fracture toughness, and specific strength of alloy by 22, 56, 45, and 35 pct, respectively. At higher Mn concentrations, the formation of large Mn-rich platelets in the microstructure reduces the tensile properties. Friction stir processing at 12 mm/min and 1600 rpm significantly enhances both the strength and ductility of the alloy. The tensile strength, yield strength, fracture strain, fracture toughness, microhardness, and specific strength of FSPed Al-2Ni-4Mn alloy improved by 97, 83, 30, 380, 152, and 110  pct, respectively, as compared to those of the as-cast Al-4Ni alloy. This can be attributed to dispersion strengthening of Ni- and Mn-rich dispersoids, formation of ultrafine grains, and elimination of casting defects. The fractography results also show that the brittle fracture mode of the as-cast Mn-rich alloys turns to a more ductile mode, comprising fine and equiaxed dimples in FSPed samples.


  1. 1.
    W. Yu, Q. Hao, L. Fan, and J. Li: J. Alloys Comp., 2016, Vol. 688, pp. 798-803.CrossRefGoogle Scholar
  2. 2.
    Y. Fan, K. Huang, MM Makhlouf (2015) Metall. Mater. Trans. A 46:5830–5841.CrossRefGoogle Scholar
  3. 3.
    N.A. Belov, A.N. Alabin, and D.G. Eskin: Scrip. Mater., 2004, Vol. 50, pp. 89-94.CrossRefGoogle Scholar
  4. 4.
    J.C. Lin, V.S. Zolotorevsky, M.V. Glazoff, S.J. Murtha, and N.A. Belov: US Patent No. 783730B2, 2001.Google Scholar
  5. 5.
    C. Suwanpreecha, P. Pandee, U. Patakham, and C. Limmaneevichitr: Mater. Sci. Eng. A, 2018, Vol. 709, pp. 46-54.CrossRefGoogle Scholar
  6. 6.
    J.T. Kim, S.H. Hong, J.M. Park, J. Eckert, and K.B. Kim: J. alloys comp., 2018, Vol. 749, pp. 205-210.CrossRefGoogle Scholar
  7. 7.
    B.K. Prasad, K. Venkateswarlu, O.P. Modi, A.K. Jha, S. Das, R. Dasgupta, and A.H. Yegneswaran: Met. Mater. Trans. A, 1998, Vol. 29A, pp. 2747-2752.CrossRefGoogle Scholar
  8. 8.
    J.W. Martin, R.D. Doherty, and B. Cantor, Stability of microstructure in metallic systems, Cambridge University press, Cambridge, UK, 1997, pp. 298-300.CrossRefGoogle Scholar
  9. 9.
    W.H. Hunt Jr: J. Powder Metal., 2000, Vol. 36, pp. 51-60.Google Scholar
  10. 10.
    P. Sampath, V. Krishna Parangodath, K.R. Udupa, and U.B. Kuruveri: J. Composites., 2015, Vol. 2015, pp. 1-9.CrossRefGoogle Scholar
  11. 11.
    P. Pandey, S. Kashyap, C.S. Tiwary, and K. Chattopadhyay: Met. Mater. Trans. A, 2017, Vol. 48, pp. 5940-5950.CrossRefGoogle Scholar
  12. 12.
    J. Mu, P. Sha, Z. Zhu, Y. Wang, H. Zhang, and Z. Hu: J. Mater. Res., 2014, Vol. 29, pp. 708-17.CrossRefGoogle Scholar
  13. 13.
    E. Karaköse, T. Karaaslan, M. Keskin, and O. Uzun: J. Mater. Proc. Tech., 2008, Vol. 195, pp. 58-62.CrossRefGoogle Scholar
  14. 14.
    M. Ragab, and H.G. Salem: in Investigation of the Structural Stability of Nanostructured Al-5.7wt%-Ni Mechanically Alloyed Eutectic Alloy Powder, TMS (The Minerals, Metals & Materials Society), M. Hyland, ed., Light Metals, Springer, Cham, 2015, pp. 346–52.Google Scholar
  15. 15.
    Y. Du, Y. Chang, B. Huang, W. Gong, Z. Jin, and H. Xu: Mater. Sci. Eng. A, 2003, Vol. 363A, pp. 140-151.CrossRefGoogle Scholar
  16. 16.
    G. Gonzalez, G.A. Lara-Rodriguez, A. Sandoval-Jiménez, W. Saikaly, and A. Charai: Mater. Char. 2008, Vol. 59, pp. 1607-1612.CrossRefGoogle Scholar
  17. 17.
    Yangyang Fana, and Makhlouf M. Makhlouf: Mater. Sci. Forum, 2013, Vol. 765, pp 8-12.CrossRefGoogle Scholar
  18. 18.
    V. Sharma, U. Prakash, and B.V.M. Kumar: J. Mater. Proc. Tech., 2015, Vol. 224, pp. 117–134.CrossRefGoogle Scholar
  19. 19.
    P. Teymoory, A. Zarei-Hanzaki, E. Farabi, H. Monajati, and H.R. Abedi: Adv. Eng. Mater., 2017, Vol. 11, 1700502.Google Scholar
  20. 20.
    Z.Y. Ma: Met. Mater. Trans. A, 2008, Vol. 39, pp. 642-658.CrossRefGoogle Scholar
  21. 21.
    J.Q. Su, T.W. Nelson, and C.J. Sterling: Philos. Mag., 2006, Vol. 86, pp. 1-24.CrossRefGoogle Scholar
  22. 22.
    M.S. Węglowski: Arch. Civil Mech. Eng., 2018, Vol. 18, pp. 114-129.CrossRefGoogle Scholar
  23. 23.
    R.S. Mishra, and Z.Y. Ma: Mater. Sci. Eng. R, 2005, Vol. 50, pp. 1-78.CrossRefGoogle Scholar
  24. 24.
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra: Met. Mater. Trans. A, 2006, Vol. 37, pp. 3323-3336.CrossRefGoogle Scholar
  25. 25.
    Y. Yang, Y. Zhao, X. Kai, and R. Tao: J. Alloys Comp., 2017, Vol. 710, pp. 225-233.CrossRefGoogle Scholar
  26. 26.
    P. Nelaturu, S. Jana, R.S. Mishra, G. Grant, and B.E. Carlson: Mater. Sci. Eng. A., 2018, Vol. 716, pp. 165-178.CrossRefGoogle Scholar
  27. 27.
    Z. Du, M.-J. Tan, J.-F. Guo, and J. Wei, J. Mater., 2018, Vol. 230, pp. 825–833.Google Scholar
  28. 28.
    M. Barmouz, K. Abrinia, and J. khosravi: Mater. Sci. Eng. A, 2013, Vol. 559, pp. 917–919.CrossRefGoogle Scholar
  29. 29.
    M.M. El-Rayes, and E.A. El-Danaf: J. Mater. Proc. Tech., 2012, Vol. 212, pp. 1157-1168.CrossRefGoogle Scholar
  30. 30.
    Ø. Ryen, B. Holmedal, Q. Nijs, E. Nes, E. Sjölander, and H-E. Ekström: Met. Mater. Trans. A, 2006, Vol. 37, pp. 1999-2006.CrossRefGoogle Scholar
  31. 31.
    M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, and S.H. Seyyedein: Prog. Nat. Sci. Mater. Int., 2016, Vol. 26, pp. 182-191.CrossRefGoogle Scholar
  32. 32.
    K.A. Darling, A.J. Roberts, L. Armstrong, D. Kapoor, M.A. Tschopp, and L.J. Kecskes: Mater. Sci. Eng. A, 2014, Vol. 589, pp. 57-65.CrossRefGoogle Scholar
  33. 33.
    Q. Zhao, B. Holmedal, Y. Li, E. Sagvolden, and O.M. Løvvik, Mater. Sci. Eng. A, 2015, Vol. 625, pp. 153-157.CrossRefGoogle Scholar
  34. 34.
    A.M.F. Muggerud, E.A. Mørtsell, Y. Li, and R. Holmestad: Mater. Sci. Eng. A, 2013, Vol. 567, pp. 21-28.CrossRefGoogle Scholar
  35. 35.
    K.T. Huang, T.S. Lui, and L.H. Chen: Mater. Trans., 2006, Vol. 47, pp. 2405-2412.CrossRefGoogle Scholar
  36. 36.
    R.D. Askeland, P.P. Fulay, and W.J. Wright: “The Science and Engineering of Materials”, 6th ed., Cengage Learning, Stamford, USA, 2010, pp. 539-540.Google Scholar
  37. 37.
    F. Hannard, S. Castin, E. Maire, R. Mokso, T. Pardoen, and A.Simar: Acta Mater., 2017, Vol. 130, pp. 121-136.CrossRefGoogle Scholar
  38. 38.
    F.J. Humphreys, and M. Hatherly: “Recrystallization and related annealing phenomena”, 2nd ed., Elsevier Ltd, Killington, Oxford, UK, 2004.Google Scholar
  39. 39.
    Y.S. Sato, S.H.C. Park, and H. Kokawa: Met. Mater. Trans. A, 2001, Vol. 32, pp. 3033-3042.CrossRefGoogle Scholar
  40. 40.
    K.V. Jata, K.K. Sankaran, and J.J. Ruschau: Met. Mater. Trans. A, 2000, Vol. 31, pp. 2181-2192.CrossRefGoogle Scholar
  41. 41.
    K.T. Huang, T.S. Lui, and L.H. Chen: Mater. Trans., 2005, Vol. 46, pp. 3051-3058.CrossRefGoogle Scholar
  42. 42.
    N. Akaberi, R. Taghiabadi, and A. Razaghian, J. Tribology, 2017, Vol. 139, pp. 051602-1-051602-10.CrossRefGoogle Scholar
  43. 43.
    M. Asadian Nozari, R. Taghiabadi, M. Karimzadeh, and M.H. Ghoncheh, Metall. Mater. Trans. B, 2018, Vol. 49, pp. 1236–45.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Fatemeh Yousefi
    • 1
  • Reza Taghiabadi
    • 1
    Email author
  • Saeid Baghshahi
    • 1
  1. 1.Department of Materials Science and MetallurgyImam Khomeini International University (IKIU)QazvinIran

Personalised recommendations