Advertisement

The Effect of Arc Current on Microstructure and Mechanical Properties of Hybrid LasTIG Welds of High-Strength Low-Alloy Steels

  • Hana Šebestová
  • Petr Horník
  • Libor Mrňa
  • Pavel Doležal
  • Eliška Mikmeková
Article
  • 87 Downloads

Abstract

A hybrid laser-tungsten inert gas (LasTIG) welding system was applied for 3-mm-thick S460MC and S700MC high-strength low-alloy steel sheet butt welding with the aim to reduce the cooling rate compared with laser welding. The effect of the electric current was evaluated. Increasing arc current led to the increase of fused metal and heat-affected-zone (HAZ) dimensions. Fused metal grains were larger whereas the microhardness increase toward the base metal was lower at higher currents in this region. Microhardness peaks corresponding to the coarse-grained HAZ were reduced at higher currents for S460MC but were almost not affected in S700MC. The tensile strength of both the laser weld and LasTIG welds was comparable to the base metal for both alloys.

Notes

Acknowledgments

This research was supported by the Technology Agency of the Czech Republic (Project GAMA TG03010046) and the Ministry of Education, Youth and Sports of the Czech Republic (Project LO1212). The research infrastructure was funded by the Ministry of Education, Youth and Sports of the Czech Republic and the European Commission (Project CZ.1.05/2.1.00/01.0017) and by the Czech Academy of Sciences (Project RVO:68081731). The authors would like to thank Ing. Kamil Podaný, PhD, for the tensile test execution.

References

  1. 1.
    [1] X. Cao, P. Wanhara, J. Huang, C. Munro, A. Nolting: Mater. Des., 2011, vol. 32, pp. 3399-3413.CrossRefGoogle Scholar
  2. 2.
    [2] C.J. Bayley, A. Mantei: Can. Met. Quart., 2009, vol. 48, pp. 311-316.CrossRefGoogle Scholar
  3. 3.
    [3] K. Sampath: J. Mater. Eng. Perform., 2006, vol. 15, pp. 32-40.CrossRefGoogle Scholar
  4. 4.
    [4] J. Brozda, M. Zeman, M. Lomozik: Weld. Int., 2000, vol. 14, pp. 593-605.CrossRefGoogle Scholar
  5. 5.
    EN 10025-4: Hot rolled products of structural steels-part 4: technical delivery conditions for thermomechanical rolled weldable fine grain structural steels, 2004.Google Scholar
  6. 6.
    EN 10149-2: Hot rolled flat products made of high yield strength steels for cold forming-part 2: technical delivery conditions for thermomechanically rolled, 2013.Google Scholar
  7. 7.
    [7] W. Xu, D. Westerbaan, S. S. Nayak, D.L. Chen, F. Goodwin, Y. Zhou: Mater. Des., 2013, vol. 43, pp. 373-83.CrossRefGoogle Scholar
  8. 8.
    J. Górka and S. Stanoba: Proc. SPIE 10159, 2016, pp. 101590K.Google Scholar
  9. 9.
    [9] W.M. Steen: Laser Material Processing, 2nd ed., Springer, London, 1998.CrossRefGoogle Scholar
  10. 10.
    [10] X. Yue, J.C. Lippold, B.T. Alexandrov, S.S. Babu: Weld. J., 2012, vol. 91, pp. 67S-75S.Google Scholar
  11. 11.
    J. Zhou and H.L. Tsai: Hybrid Laser-Arc Welding, Welding Processes, R. Kovacevic, ed., InTech, 2012, http://cdn.intechopen.com/pdfs/40994/InTech-Hrbrid_laser_arc_welding.pdf. Accessed 17 January 2018.
  12. 12.
    [12] F. Möller, H. Kügler, S. Kötschau, A. Geier, S. F. Goecke: Phys. Procedia, 2014, vol. 56, pp. 620-629.CrossRefGoogle Scholar
  13. 13.
    [13] G. Song, L.M. Liu, M.S. Chi, J.F. Wang: Mater. Sci. Forum, 2005, vol. 488–489, pp. 371–375.CrossRefGoogle Scholar
  14. 14.
    [14] C. Kim, W. Choi, J. Kim, S. Rhee: Mater. Trans., 2008, vol. 49, pp.179-186.CrossRefGoogle Scholar
  15. 15.
    [15] A.D. Samigullin, D.A. Bashmakov, I.Kh. Israphilov, G.A. Turichin: J. Phys.: Conf. Ser., 2017, vol. 789, pp. 012048.Google Scholar
  16. 16.
    [16] F. Chaussé, P. Paillard, E. Bertrand, G. Rückert: J. Laser Appl., 2016, vol. 28, pp. 022416.CrossRefGoogle Scholar
  17. 17.
    T. Kim, Y. Suga, T. Koike (2003) JSME Int. J., Ser. A, 46:202-207.Google Scholar
  18. 18.
    Y. Murata, K. Yokoyama, A.S. Baskoro, and Y. Suga: Proc. of the Materials and Processing Conference, 2009.Google Scholar
  19. 19.
    M. Sohail, M. Karhu, S.J. Na, S.W. Han, and V. Kujanpaa: J. Laser Appl., 2017, vol. 29, pp. 042009:1–14.Google Scholar
  20. 20.
    [20] G. Casalino, S.L. Campanelli, U. Dal Maso, A.D. Ludovico: Procedia CIRP, 2013, vol. 12, pp. 151-156.CrossRefGoogle Scholar
  21. 21.
    Voestapline Steel & Service Center GmbH, Inspection Certificate: S460MC, 6 April 2017.Google Scholar
  22. 22.
    Voestapline Steel & Service Center GmbH, Inspection Certificate: S700MC, 16 March 2017.Google Scholar
  23. 23.
    [23] N. Yurioka: Welding in the World, 2004, vol. 48, pp. 21-27.CrossRefGoogle Scholar
  24. 24.
    [24] S.W. Banovic, T. Foecke, W.E. Luecke, J.D. McColskey, C.N. McCowan, T.A. Siewert, F.W. Gayle: JOM, 2007, vol. 59, pp. 22-30.CrossRefGoogle Scholar
  25. 25.
    M. Singh, T. Ohji, and R. Asthana: Green and Sustainable Manufacturing of Advanced Material, Elsevier Science Publishing Co Inc., 2015. ISBN: 978-0-12-411497-5.Google Scholar
  26. 26.
    K. Hulka: The role of niobium in low carbon bainitic HSLA steels, Niobium Products Company GmbH, Dűsseldorf, Germany. https://www.phase-trans.msm.cam.ac.uk/2005/LINK/10.pdf. Accessed 23 January 2018.
  27. 27.
    [27] J. Górka: Materiali in Tehnologie, 2016, vol. 50, pp. 617-621.CrossRefGoogle Scholar
  28. 28.
    Voestapline Steel & Service Center GmbH, High-strength and ultra-high strength thermo-mechanically rolled fine-grained steels, 2014. http://www.voestalpine.com/alform/en/Media-Center/Downloads. Accessed 23 January 2018.
  29. 29.
    [29] Z. Liu, M. Kutsuna: Weld. Soc. Proc., 2006, vol. 24, pp. 344-349.Google Scholar
  30. 30.
    [30] K. Poorhaydari, B.M. Patchett: D.G. Ivey: Microsc. Microanal., 2002, vol. 8, pp. 1252-1253.Google Scholar
  31. 31.
    [31] J. Bian, H. Mohrbacher, J.S. Zhang, Y.T. Zhao, H.Z. Lu, H. Dong: Adv. Manuf., 2015, vol. 3, pp. 27–36.CrossRefGoogle Scholar
  32. 32.
    J.N. DuPont: Fundamentals of Weld Solidification, ASM Handbook, Volume 6A, Welding Fundamentals and Processes, ASM International, 2011. https://www.lehigh.edu/matsci/faculty/dupont/docs/Fundamentals_of_Weld_Solidification.pdf. Accessed 11 December 2017.
  33. 33.
    [33] S. Kou: Welding Metallurgy, 2nd ed. Hoboken, NJ: John Wiley & Sons, 2003.Google Scholar
  34. 34.
    [34] Y.Q. Zhang, H.Q. Zhang, J.F. Li, W.M. Liu: J. Iron Steel Res. Inter., 2009, vol. 16, pp. 73-80.CrossRefGoogle Scholar
  35. 35.
    M. Maalekian: The Effects of Alloying Elements on Steels (I), Technische Universität Graz, 2007. https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=32837. Accessed 4 January 2018.
  36. 36.
    [36] Y. Tian, H.T. Wang, Y. Li, Z.D. Wang, G.D. Wang: Mater. Res., 2017, vol. 20, pp. 853-859.CrossRefGoogle Scholar
  37. 37.
    [37] S.R. Nathan, V. Balasubramanian, S. Malarvizhi, A.G. Rao: Defence Technol., 2015, vol. 11, pp. 308-317.CrossRefGoogle Scholar
  38. 38.
    [38] C. Capdevila, F.G. Caballero, C. García de Andrés: J. Mater. Sci. Technol., 2003, vol. 19, pp. 581-586.CrossRefGoogle Scholar
  39. 39.
    [39] C. Munro, A. Nolting, X. Cao, P. Wanjara: Mater. Sci. Forum, 2012, vol. 706-709, pp. 2992-2997.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Hana Šebestová
    • 1
  • Petr Horník
    • 1
  • Libor Mrňa
    • 1
  • Pavel Doležal
    • 2
  • Eliška Mikmeková
    • 1
  1. 1.Institute of Scientific Instruments of the Czech Academy of SciencesBrnoCzech Republic
  2. 2.Faculty of Mechanical Engineering, Institute of Materials Science and EngineeringBrno University of TechnologyBrnoCzech Republic

Personalised recommendations