Metallurgical and Materials Transactions B

, Volume 49, Issue 6, pp 3211–3219 | Cite as

Cell-to-Dendrite Transition Induced by a Static Transverse Magnetic Field During Lasering Remelting of the Nickel-Based Superalloy

  • Xiaoqi Liu
  • Jianbo Yu
  • Sansan ShuaiEmail author
  • Weidong Xuan
  • Jiang WangEmail author
  • Zhongming RenEmail author


The effect of static transverse magnetic field on the microstructure of IN 713C nickel-based superalloy treated by laser remelting (LR) has been investigated. Dendrite microstructure’s transition from cellular to dendritic was observed with the application of a 0.45 T static transverse magnetic field during LR. The white streak structures resulting from thermal stress in the molten pool was found to disappear for the sample treated under magnetic field. The Hartman number (Ha) was calculated and found to be larger than 10, indicating that the damping effect of the static magnetic field on the melt flow was found to be dominant in the present situation. The slowed melt flow is beneficial to the dendritic growth, which may be attributed to the cell-to-dendrite transition during LR. The thermoelectric magnetic force (TEMF) acting on the dendrites was found to destabilize the solid/liquid interface and thus enhance dendritic growth during LR under the magnetic field as well. The EBSD analysis shows that new grains formed in the remelting region when the static magnetic field was applied. The TEMF was calculated to be as high as 1.12 × 106 N/m3, which is capable of fragmentting the dendrite arms and leading to the formation of new grains during LR.



This study is financially supported by National Natural Science Foundation of China (Grants 51690162, 51604171 and 51701112), China Postdoctoral Science Foundation (Nos. 2017T100291 and 2017M611530), Shanghai Municipal Science and Technology Commission (No. 17JC1400602), and open fund of State Key Laboratory of Solidification Processing in NWPU (SKLSP201602 and SKLSP201706).


  1. 1.
    J. Singh: J. Mater. Sci., 1994, vol. 29, pp. 5232-5258.CrossRefGoogle Scholar
  2. 2.
    M. Zimmermann, M. Carrard, M. Gremaud, and W. Kurz: Mater. Sci. Eng. A, 1991, vol. 134, pp. 1278-1282.CrossRefGoogle Scholar
  3. 3.
    S. C. Gill, M. Zimmermann, and W. Kurz: Acta Metall. Mater., 1992, vol. 40, pp. 2895-2906.CrossRefGoogle Scholar
  4. 4.
    H. H. Liebermann: Rapidly Solidified Alloys, 1st ed., Marcel Dekker Co., New York, NY, 1993, pp. 1-16.CrossRefGoogle Scholar
  5. 5.
    T. S. Srivatsan and T. S. Sudarshan: Rapid Solidification Technology, 1st ed., Technomic Publishing Co., Pennsylvania, PA, 1993, pp. 11-38.Google Scholar
  6. 6.
    M. Jiang, X. P. Jiang, J. G. Huang, X. F. Sun, Y. L. Ge, and Z. Q. Hu: Chin. J. Mater. Res., 1989, vol. 3, pp. 199-204.Google Scholar
  7. 7.
    Q. Y. Pan, Y. M. Li, W. D. Huang, X. Lin, G. L. Ding, and Y. H. Zhou: Acta Metall. Sin., 1996, vol. 32, pp. 718-722.Google Scholar
  8. 8.
    Z. Zhang, P. Lin, D. Cong, S. H. Kong, H. Zhou, and L. Q. Ren: Opt. Laser Tech., 2014, vol. 64, pp. 227-234.CrossRefGoogle Scholar
  9. 9.
    E. Chikarakara, S. Naher, and D. Brabazon: Appl. Phys. A. 2010, vol. 101, pp. 367-371.CrossRefGoogle Scholar
  10. 10.
    F. Weng, C. Chen, and H. Yu: Mater. Design, 2014, vol. 58, pp. 412-425.CrossRefGoogle Scholar
  11. 11.
    T. Moriwaki, E. Shamoto, and K. Inoue: CIRP Ann. Man. Tech., 1992, vol. 41, pp. 141-144.CrossRefGoogle Scholar
  12. 12.
    N. Abu-Dheir, M. Khraisheh, K. Saito, and A. Male: Mater. Sci. Eng. A, 2005, vol. 393, pp. 109-117.CrossRefGoogle Scholar
  13. 13.
    T. Y. Liu, J. Sun, C. Sheng, Q. X. Wang, Y. H. Zhang, L. J. Li, H. G. Zhong, and Q. J. Zhai: Adv. Man., 2017, vol. 5, pp. 1-6.CrossRefGoogle Scholar
  14. 14.
    B. I. Jung, C. H. Jung, T. K. Han, and Y. H. Kim: J. Mater. Process. Tech., 2001, vol. 111, pp. 69-73.CrossRefGoogle Scholar
  15. 15.
    G. F. Zhang, T. M. Song, C. J. Yin, and J. J. Guan: Trans. China Welding. Inst., 2001, vol. 22, pp. 85-87.Google Scholar
  16. 16.
    W. Wang, Y. M. Yue, G. Yang, L. Y. Qin, and Y. H. Ren: Chin. J. Lasers. 2015, vol. 42, pp. 85-92.CrossRefGoogle Scholar
  17. 17.
    Y. Cui, C. L. Xu, and Q. Han: Scr. Mater., 2006, vol. 55, pp. 975-978.CrossRefGoogle Scholar
  18. 18.
    D. Wu, M. Guo, G. Ma, and F. Y. Niu: Mater. Lett., 2015, vol. 141, pp. 207-209.CrossRefGoogle Scholar
  19. 19.
    C. Y. Chen, Q. L. Deng, and J. L. Song: J. Nanjing U. Aeronaut. Astronautics. 2005, vol. 37, pp. 44-48.Google Scholar
  20. 20.
    C. Q. Wang, H. X. Liu, R. Zhou, Y. Jiang, and X. Zhang: Acta Metall. Sin., 2013, vol. 49, pp. 221-228.CrossRefGoogle Scholar
  21. 21.
    X. Li, A. Gagnoud, Y. Fautrelle, Z. M. Ren, R. Moreau, Y. D. Zhang, and C. Esling: Acta Mater., 2012, vol. 60, pp. 3321-3332.CrossRefGoogle Scholar
  22. 22.
    H. X. Liu, S. W. Ji, Y. H. Jiang, X. W. Zhang, and C. Q. Wang: High Power Laser Part. Beams. 2012, vol. 24, pp. 2901-2905.CrossRefGoogle Scholar
  23. 23.
    M. Bachmann, V. Avilov, A. Gumenyuk, and M. Rethmeier: J. Mater. Process. Tech., 2014, vol. 21, pp. 578-591.CrossRefGoogle Scholar
  24. 24.
    J. Wang, Y. Fautrelle, Z. M. Ren, H. Nguyen-Thi, G. Salloum-Abou-Jaoude, G. Reinhart, X. Li, and I. Kaldre: Appl. Phys. Lett., 2014, vol. 104, pp. 121916.CrossRefGoogle Scholar
  25. 25.
    X. Li, Y. Fautrelle, and Z. M. Ren: Scr. Mater., 2009, vol. 60, pp. 489-492.CrossRefGoogle Scholar
  26. 26.
    X. Li, A. Gagnoud, Z. M. Ren, Y. Fautrelle, and R. Moreau: Acta Mater., 2009, vol. 57, pp. 2180-2197.CrossRefGoogle Scholar
  27. 27.
    X. Li, Y. Fautrelle, Z. M. Ren: Acta Mater., 2007, vol. 55, pp. 1377-1386.CrossRefGoogle Scholar
  28. 28.
    D. F. Du, Z. Y. Lu, A. Gagnoud, Y. Fautrelle, Z. M. Ren, X. G. Lu, R. Moreau, and X. Li: J. Mater. Res., 2015, vol. 30, pp. 1043-1055.CrossRefGoogle Scholar
  29. 29.
    M. Pang, G. Yu, H. H. Wang, and C. Y. Zheng: J. Mater. Process. Tech., 2008, vol. 207, pp. 271-275.CrossRefGoogle Scholar
  30. 30.
    A.F.A. Hoadley, M. Rappaz, and M. Zimmermann: Metall. Mater. Trans. B, 1991, vol. 22, pp. 101-109.CrossRefGoogle Scholar
  31. 31.
    W. Kurz and D. J. Fisher: Fundamentals of solidification, 3rd ed., Trans Tech Publications Ltd., Zürich, 1992, pp. 63-85.Google Scholar
  32. 32.
    W. Kurz and D. J. Fisher: Retrospective Collection, 1998, vol. 338, pp. 6218.Google Scholar
  33. 33.
    C. K. Lee and W. Lee: Int. J. Precis. Eng. Man., 2013, vol. 14, pp. 1915-1923.CrossRefGoogle Scholar
  34. 34.
    O. Velde, R. Gritzki, and R. Grundmann: Int. J. Heat Mass Tran., 2001, vol. 44, pp. 2751-2762.CrossRefGoogle Scholar
  35. 35.
    O. Velde, A. Techel, and R. Grundmann: Surf. Coat. Tech., 2002, vol. 150, pp. 170-176.CrossRefGoogle Scholar
  36. 36.
    H. P. Utech and M. C. Flemings: J. Appl. Phys., 1966, vol. 37, pp. 2021-2024.CrossRefGoogle Scholar
  37. 37.
    G. M. Oreper and J. Szekely: J. Cryst. Growth, 1983, vol. 64, pp. 505-515.CrossRefGoogle Scholar
  38. 38.
    J. Wang, Y. Fautrelle, Z. M. Ren, X. Li, H. Nguyen-Thi, N. Mangelinck-Noel, G. Salloum-Abou-Jaoude, Y. B. Zhong, I. Kaldre, A. Bojarevics and L. Buligins: Appl. Phys. Lett., 2012, vol. 101, pp. 1331-1333.Google Scholar
  39. 39.
    J. Wang, Y. Fautrelle, H. Nguyen-Thi, G. Reinhart, H. L. Liao, X. Li, Y. B. Zhong, Z. M. Ren: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1169-1179.CrossRefGoogle Scholar
  40. 40.
    R. Moreau: Prog. Cryst. Growth CH., 1999, vol. 38, pp. 161-194.CrossRefGoogle Scholar
  41. 41.
    H. Liu, W. D. Xuan, X. L. Xie, C. J. Li, J. Wang, J. B. Yu, X. Li, Y. B. Zhong and Z. M. Ren: Metall. Mater. Trans. A, 2017, vol. 48, pp. 1-11.Google Scholar
  42. 42.
    Y. Kraftmakher: Physics Education, 2005, vol. 40, pp. 281.CrossRefGoogle Scholar
  43. 43.
    M. Motokawa: ISIJ Int., 2000. Vol. 10, pp. 612.Google Scholar
  44. 44.
    J. L. Decarlo and R. G. Pirich: Metall. Trans. A, 1984, vol.15, pp. 2155-2161.CrossRefGoogle Scholar
  45. 45.
    D. H. Matthiesen, M. J. Wargo, S. Motakef, D. J. Carlson, J. S. Nakos and A. F.Wittet: J. Cryst. Growth, 1987, vol. 85, pp. 557-560.CrossRefGoogle Scholar
  46. 46.
    T. Liu, Q. Wang, A. Gao, H. Zhang, and J. He: J. Alloys Compd., 2011, vol. 509, pp. 5822-5824.CrossRefGoogle Scholar
  47. 47.
    G. D. Robertson Jr. and D. J. Oconnor: J. Cryst. Growth, 1986, vol. 76, pp. 100-110.CrossRefGoogle Scholar
  48. 48.
    C. J. Li, Z. M. Ren, W. L. Ren, K. Deng, H. Cao, B. Zhong and Y. Wu: Rev. Sci. Instrum., 2009, vol. 80, pp. 349-352.Google Scholar
  49. 49.
    P Lehmann, R Moreau, D Camel and R Bolcato: Acta Mater., 1998, vol. 46, pp. 4067-4079.CrossRefGoogle Scholar
  50. 50.
    T. Zhang, W. L. Ren, J. W. Dong, X. Li, Z. M. Ren, G. H. Cao, Y. B. Zhong, K. Deng, Z. S. Lei and J. Guo: J. Alloys Compd., 2009, vol. 487, pp. 612-617.CrossRefGoogle Scholar
  51. 51.
    M. Bachmann, V. Avilov, A. Gumenyuk and M. Rethmeier: Int. J. Heat Mass Tran., 2013, vol. 60, pp. 309-321.CrossRefGoogle Scholar
  52. 52.
    T. Chande and J. Mazumder: J. Appl. Phys., 1985, vol. 57, pp. 2226-2232.CrossRefGoogle Scholar
  53. 53.
    A. Schneider, V. Avilov, A. Gumenyuk, and M. Rethmeier: Phys. Procedia, 2013, vol. 41, pp. 4-11.CrossRefGoogle Scholar
  54. 54.
    F. C. Liu, X. Lin, G. Yang, M. Song, J. Chen, and W. Huang: Opt. laser tech., 2011, vol. 43, pp. 208-213.CrossRefGoogle Scholar
  55. 55.
    W. D. Xuan, Z. M. Ren, and C. J. Li: J. Alloys Compd., 2015, vol. 620, pp. 10-17.CrossRefGoogle Scholar
  56. 56.
    G. Reinhart, A. Buffet, H. Nguyen-Thi, B. Billia, H. Jung, N. Bergeon, T. Schenk, J. Hartwig and J. Baruchel: Metall. Mater. Trans. A, 2008, vol. 39, pp. 865-874.CrossRefGoogle Scholar
  57. 57.
    H. Jung, N. Mangelinck-Noel, H. Nguyen-Thi, N. Bergeon, T. Schenk, J. Hartwig and J. Baruchel: Cast Metals, 2013, vol. 22, pp. 208-211.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Special Steel, School of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations