Advertisement

Metallurgical and Materials Transactions B

, Volume 50, Issue 1, pp 136–149 | Cite as

The Influence of Sulfur Content on the Carbothermal Reduction of SiMn Slag

  • Xiang LiEmail author
  • Merete Tangstad
Article
  • 143 Downloads

Abstract

This article examines the influence of sulfur content on the carbothermal reduction of MnO and SiO2 in SiMn slag by carbon black. The sulfur content in the synthetic slag is varied from 0 to 1.0 wt pct. Reduction experiments are carried out in a thermogravimetric (TG) furnace at 1873 K (1600 °C) under CO atmospheric pressure. The reduction rates are measured based on the weight loss data, and the samples are characterized by SEM/EDS and ICP-MS. The wetting property of slag on carbon black is also studied with the sessile drop technique. The reaction rate on the slag-metal interface is one order higher than on the slag-carbon interface. A small amount of sulfur (0.2 and 0.44 wt pct) accelerates the slag-metal reaction rate constant by 2.2 and 4.2 times, respectively. Therefore, small amounts of sulfur in slag significantly improve the reduction of MnO and SiO2. The MnS precipitation phenomenon during slag cooling is studied by FactSage simulation and experimental verification.

Notes

Acknowledgments

This research is supported under the Norwegian Research Council (GasFerroSil, Project No. 224950). The authors would also like to thank Dr. Kai Tang from SINTEF Materials and Chemistry for his assistance with thermodynamic calculations.

References

  1. 1.
    S.E. Olsen, M. Tangstad and T. Lindstad: Production of Manganese Ferroalloys, Tapir Academic Press, Trondheim, Norway, 2007.Google Scholar
  2. 2.
    O. Ostrovski and D. Swinbourne: Steel. Res. Int., 2013, vol. 84, pp. 680–6.CrossRefGoogle Scholar
  3. 3.
    T. Coetsee, C. Reinke, J. Nell and P.C. Pistorius: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2534–52.CrossRefGoogle Scholar
  4. 4.
    J.H. Stansbie: Iron and Steel, Read Books, Worcestershire, UK, 2007, pp. 351–2.Google Scholar
  5. 5.
    M. Tangstad: The High Carbon Ferromanganese Process–Coke Bed Relations, PhD Thesis, Norwegian Institute of Technology, Trondheim, Norway, 1996.Google Scholar
  6. 6.
    K. Xu, G. Jiang, W. Ding, L. Gu, S. Guo and B. Zhao: ISIJ Int., 1993, vol. 33, pp. 104–8.CrossRefGoogle Scholar
  7. 7.
    J. Safarian and L. Kolbeinsen: Metall. Mater. Trans. B, 2015, vol. 46: 125–34.CrossRefGoogle Scholar
  8. 8.
    T.A. Skjervheim: Kinetics and mechanisms for transfer of manganese and silicon from melten oxide to liquid manganese metal, PhD Thesis, Norwegian Institute of Technology, Trondheim, Norway, 1994.Google Scholar
  9. 9.
    J.F. White, J. Lee, O. Hessling and B. Glaser: Metall. Mater. Trans. B, 2017, vol. 48: 506–15.CrossRefGoogle Scholar
  10. 10.
    J.F. White, J. Lee, O. Hessling, and B. Glaser: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts, Seattle, USA, 2016, pp. 565–72.Google Scholar
  11. 11.
    H. Sun, K. Mori and R.D. Pehlke: Metall. Trans. B, 1993, vol. 24, pp. 113–20.CrossRefGoogle Scholar
  12. 12.
    I. Egry, E. Ricci, R. Novakovic and S. Ozawa: Adv. Colloid. Interfac., 2010, vol. 159, pp. 198–212.CrossRefGoogle Scholar
  13. 13.
    T. Dubberstein, H. Heller, J. Klostermann, R. Schwarze and J. Brillo: J. Mater. Sci., 2015, vol. 50, pp. 7227–37.CrossRefGoogle Scholar
  14. 14.
    T. Dubberstein, A. Jahn, M. Lange, H. Heller and P.R. Scheller: Steel. Res. Int., 2014, vol. 85, pp. 1220–8.CrossRefGoogle Scholar
  15. 15.
    T. Zienert, S. Dudczig, O. Fabrichnaya and C.G. Aneziris: Ceram. Int., 2015, vol. 41, pp. 2089–98.CrossRefGoogle Scholar
  16. 16.
    K. Xu, W. Ding, and G. Jiang: Shenyang International Symposium on Smelting Reduction, Shengyan, China, 1986, pp. 191–206.Google Scholar
  17. 17.
    T.A. Skjervheim and S.E. Olsen: Proceedings of the 7th International Congress on Ferroalloys (INFACON VII), Trondheim, Norway, 1995, pp. 631–40.Google Scholar
  18. 18.
    T.A. Larssen: Reduction of MnO and SiO 2 from Assmang and Comilog based Slags, Master’s thesis, Norwegian University of Science & Technology, Trondheim, Norway, 2017.Google Scholar
  19. 19.
    P.P. Kim, M. Tangstad: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1185–1196.CrossRefGoogle Scholar
  20. 20.
    R. Kawamoto: Effect of Sulphur Addition on the Reduction Mechanism of Synthetic Siliconmanganese Ore, Norwegian University of Science & Technology Report, 2017.Google Scholar
  21. 21.
    M.M. Yastreboff: Mechanisms of Carbothermic Reduction of Manganese Oxide from Manganese Ore and Ferromanganese Slag, PhD Thesis, The University of New South Wales, Sydney, Australia, 2000, pp. 170–72.Google Scholar
  22. 22.
    P. Kim, T.A. Larssen, M. Tangstad, and R. Kawamoto: Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies, Part of the series The Minerals, Metals & Materials Series, San Diego, USA, 2017, pp. 475–83.Google Scholar
  23. 23.
    J. Safarian, G. Tranell, L. Kolbeinsen, M. Tangstad, S. Gaal and J. Kaczorowski: Metall. Mater. Trans. B, 2008, vol. 39, pp. 702–12.CrossRefGoogle Scholar
  24. 24.
    Y. Park and D.J. Min: ISIJ Int., 2016, vol. 56, pp. 520–6.CrossRefGoogle Scholar
  25. 25.
    J.S. Oh and J. Lee: J. Mater. Sci., 2016, vol. 51, pp. 1813–9.CrossRefGoogle Scholar
  26. 26.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I-H. Jung, Y-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer and M-A. Van Ende: Calphad J., 2016, vol. 55, pp. 1–19.CrossRefGoogle Scholar
  27. 27.
    O. Ostrovski, S.E. Olsen, M. Tangstad and M. Yastreboff: Can. Metall. Quart., 2002, vol. 41, pp. 309–18.CrossRefGoogle Scholar
  28. 28.
    H. Olsen: A Theoretical Study on the Reaction Rates in the SiMn Production Process, Master’s thesis, Norwegian University of Science & Technology, Trondheim, Norway, 2016.Google Scholar
  29. 29.
    T. Shimoo, S. Ando and H. Kimura: J. Jpn. I. Met., 1984, vol. 48, pp. 922–9.CrossRefGoogle Scholar
  30. 30.
    A. Blackman and L. Gahan: Aylward and Findlay’s SI Chemical Data, 7th Edition, Wiley, New Jersey, USA, 2014.Google Scholar
  31. 31.
    M. Yastreboff, O. Ostrovski and S. Ganguly: ISIJ Int., 2003, vol.43, pp. 161–5.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Energy and Power EngineeringJiangsu UniversityJiangsuChina
  2. 2.Department of Materials Science and EngineeringNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations