Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2917–2944 | Cite as

Critical Evaluation and Thermodynamic Optimization of the Li2O-Al2O3 and Li2O-MgO-Al2O3 Systems

  • Bikram Konar
  • Marie-Aline Van Ende
  • In-Ho Jung
Article

Abstract

The thermodynamic and phase diagram data of the Li2O-Al2O3 and Li2O-MgO-Al2O3 systems were critically evaluated and optimized to obtain a set of consistent Gibbs energy functions for all phases in the systems. The LiAl5O8-MgAl2O4 spinel solid solution was modeled with the two-sublattice compound energy formalism by considering the cation distribution between the tetrahedral and octahedral sites and excess vacancy in octahedral sites. The liquid phase and monoxide solid solution were also described using the modified quasichemical model with pair approximation and the Bragg–Williams random mixing model, respectively. The thermodynamic models with optimized model parameters enable the reproduction of all reliable thermodynamic and phase diagram as well as spinel structural data in the system.

Notes

Acknowledgments

Financial support from Tata Steel Europe, Posco, Hyundai Steel, Nucor Steel, RioTinto Iron and Titanium, Nippon Steel and Sumitomo Metals Corp., JFE Steel, Voestalpine Stahl, RHI, Schott AG, and the Natural Sciences and Engineering Research Council of Canada are gratefully acknowledged. One of the authors (B. Konar) would also like to thank the McGill Engineering Doctorate Award (MEDA) program of McGill University.

References

  1. 1.
    W. Jiang, J. Zhang, L. Kovarik, Z. Zhu, L. Price, J. Gigax, E. Castanon, X. Wang, L. Shao and D.J. Senor, J. Nucl. Mater., 2017, vol. 484, pp. 374-81.CrossRefGoogle Scholar
  2. 2.
    D. Guggi, H.R. Ihle and A. Neubert, Symposium on Fusion Technology, Pergamon Press, Garmisch-Partenkirchen, Germany, 1976, pp. 635-44.CrossRefGoogle Scholar
  3. 3.
    M. Nishikawa, A. Baba and Y. Kawamura, J. Nucl. Mater., 1997, vol. 246, pp. 1-8.CrossRefGoogle Scholar
  4. 4.
    F. Rosciano, P.P. Pescarmona, K. Houthoofd, A. Persoons, P. Bottke and M. Wilkening, Phys. Chem. Chem. Phys., 2013, vol. 15, pp. 6107-12.CrossRefGoogle Scholar
  5. 5.
    Z.-K. Fang, Y.-R. Zhu, T.-F. Yi and Y. Xie, ACS Sustain. Chem. Eng., 2016, vol. 4, pp. 1994-2003.CrossRefGoogle Scholar
  6. 6.
    B. Put, P.M. Vereecken, M.J. Mees, F. Rosciano, L.P. Radu and A. Stesmans, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 29045-56.CrossRefGoogle Scholar
  7. 7.
    R. Djenadic, M. Botros and H. Hahn, Solid State Ionics, 2016, vol. 287, pp. 71-76.CrossRefGoogle Scholar
  8. 8.
    C.V. Chandran and P. Heitjans, Solid-State NMR Studies of Lithium Ion Dynamics Across Materials Classes, in: Annual Reports on NMR Spectroscopy, Academic Press.Google Scholar
  9. 9.
    M. Raja, G. Sanjeev, T.P. Kumar and A.M. Stephan, Ceram. Int., 2015, vol. 41, pp. 3045-50.CrossRefGoogle Scholar
  10. 10.
    J.S. Park, X. Meng, J.W. Elam, S. Hao, C. Wolverton, C. Kim and J. Cabana, Chem. Mater., 2014, vol. 26, pp. 3128-34.CrossRefGoogle Scholar
  11. 11.
    K. Zaghib, A. Mauger, H. Groult, J. Goodenough and C. Julien, Materials, 2013, vol. 6, pp. 1028-49.CrossRefGoogle Scholar
  12. 12.
    C. Guan and J. Wang, Adv. Sci., 2016, vol. 3, pp. 1500405-23.CrossRefGoogle Scholar
  13. 13.
    S.J. Heo, B. Hu, M.A. Uddin, A. Aphale, A. Hilmi, C.-Y. Yuh, A. Surendranath and P. Singh, J. Electrochem. Soc., 2017, vol. 164, pp. H5086-92.CrossRefGoogle Scholar
  14. 14.
    [14] K. Takizawa and A. Hagiwara, J. Power Sources, 2002, vol. 109, pp. 127-35.CrossRefGoogle Scholar
  15. 15.
    [15] S. Terada, I. Nagashima, K. Higaki and Y. Ito, J. Power Sources, 1998, vol. 75, pp. 223-29.CrossRefGoogle Scholar
  16. 16.
    [16] L. Suski and M. Tarniowy, J. Mater. Sci., 2001, vol. 36, pp. 5119-24.CrossRefGoogle Scholar
  17. 17.
    [17] E. Antolini, Ceram. Int., 2013, vol. 39, pp. 3463-78.CrossRefGoogle Scholar
  18. 18.
    [18] C. Yang, G. Wen and P. Tang, Steel Res. Int., 2016, vol. 87, pp. 880-89.CrossRefGoogle Scholar
  19. 19.
    [19] T. Wu, Q. Wang, S. He, J. Xu, X. Long and Y. Lu, Steel Res. Int., 2012, vol. 83, pp. 1194-1202.CrossRefGoogle Scholar
  20. 20.
    [20] J.-W. Cho, K. Blazek, M. Frazee, H. Yin, J.H. Park and S.-W. Moon, ISIJ Int., 2013, vol. 53, pp. 62-70.CrossRefGoogle Scholar
  21. 21.
    [21] B. Lu, K. Chen, W. Wang and B. Jiang, Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1496-1509.CrossRefGoogle Scholar
  22. 22.
    [22] X.J. Fu, G.H. Wen, P. Tang, Q. Liu and Z.Y. Zhou, Ironmak. Steelmak., 2014, vol. 41, pp. 342-41.CrossRefGoogle Scholar
  23. 23.
    [23] T. Ávalos-Rendón, J. Casa-Madrid and H. Pfeiffer, J. Phys. Chem. A, 2009, vol. 113, pp. 6919-23.CrossRefGoogle Scholar
  24. 24.
    [24] T. Ávalos-Rendón, V.H. Lara and H. Pfeiffer, Ind. Eng. Chem. Res., 2012, vol. 51, pp. 2622-30.CrossRefGoogle Scholar
  25. 25.
    [25] N.S. Kulkarni, T.M. Besmann and K.E. Spear, J. Am. Ceram. Soc., 2008, vol. 91, pp. 4074-83.CrossRefGoogle Scholar
  26. 26.
    [26] Q. Guan, X. Chen, T. Gao, C. Xiao, L. Zhao, J. He and X. Long, J. Nucl. Mater., 2015, vol. 465, pp. 170-76.CrossRefGoogle Scholar
  27. 27.
    [27] S.Q. Wu, Z.F. Hou and Z.Z. Zhu, Comput. Mater. Sci., 2009, vol. 46, pp. 221-24.CrossRefGoogle Scholar
  28. 28.
    [28] E.S. Blaakmeer, F. Rosciano and E.R.H. van Eck, J. Phys. Chem. C, 2015, vol. 119, pp. 7565-77.CrossRefGoogle Scholar
  29. 29.
    [29] M.J. Mees, G. Pourtois, F. Rosciano, B. Put, P.M. Vereecken and A. Stesmans, Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 5399-5406.CrossRefGoogle Scholar
  30. 30.
    [30] S.C. Jung and Y.-K. Han, J. Phys. Chem. Lett., 2013, vol. 4, pp. 2681-85.CrossRefGoogle Scholar
  31. 31.
    [31] H.J. Byker, I. Eliezer, N. Eliezer and R.A. Howald, J. Phys. Chem., 1979, vol. 83, pp. 2349-55.CrossRefGoogle Scholar
  32. 32.
    [32] L.P. Cook and E.R. Plante, Ceram. Trans., 1992, vol. 27, pp. 193-222.Google Scholar
  33. 33.
    [33] C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer and M.A. Van Ende, CALPHAD, 2016, vol. 54, pp. 35-53.CrossRefGoogle Scholar
  34. 34.
    [34] B. Konar, M.A. Van-Ende and I.H. Jung, J. Eur. Ceram. Soc., 2017, vol. 37, pp. 2189-2207.CrossRefGoogle Scholar
  35. 35.
    [35] C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton and S. Petersen, CALPHAD, 2002, vol. 26, pp. 189-228.CrossRefGoogle Scholar
  36. 36.
    [36] A.D. Pelton and P. Chartrand, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1355-60.CrossRefGoogle Scholar
  37. 37.
    [37] A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin and Y. Dessureault, Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651-59.CrossRefGoogle Scholar
  38. 38.
    B. Konar, D.G. Kim, and I.-H. Jung, J. Eur. Ceram. Soc., 2018, vol. 38, pp. 881-3904.Google Scholar
  39. 39.
    E. Jak, P. Hayes, A.D. Pelton and S.A. Decterov: Proc VIII Int’l Conf on Molten Slags, Fluxes and Salts, Thermodynamic modelling of the Al 2O3 -CaO-FeO-Fe 2O3 -PbO-SiO 2 -ZnO system with addition of K and Na with metallurgical applications, 2009, pp. 473-490.Google Scholar
  40. 40.
    D.G. Kim, B. Konar, and I.-H. Jung, Ceram. Int., 2018.  https://doi.org/10.1016/j.ceramint.2018.06.099.CrossRefGoogle Scholar
  41. 41.
    [41] W.B. Badger and F.A. Hummel, J. Am. Ceram. Soc., 1985, vol. 68, pp. C46-47.Google Scholar
  42. 42.
    [42] E. Ising, Z. Phys., 1925, vol. 31, pp. 253-58.CrossRefGoogle Scholar
  43. 43.
    [43] B. Konar, D.-G. Kim and I.-H. Jung, Ceram. Int., 2017, vol. 43, pp. 13055-62.CrossRefGoogle Scholar
  44. 44.
    [44] I.-H. Jung, S.A. Decterov and A.D. Pelton, J. Phase Equilib. Diffus., 2004, vol. 25, pp. 329-45.CrossRefGoogle Scholar
  45. 45.
    [45] A.D. Pelton, CALPHAD, 2001, vol. 25, pp. 319-28.CrossRefGoogle Scholar
  46. 46.
    [46] T.R.N. Kutty and M. Nayak, J. Alloys Compd., 1998, vol. 269, pp. 75-87.CrossRefGoogle Scholar
  47. 47.
    [47] M. Hillert, B. Jansson and B. Sundman, Z. Metallkd., 1988, vol. 79, pp. 81-87.Google Scholar
  48. 48.
    [48] S.A. Degterov, A.D. Pelton, E. Jak and P.C. Hayes, Metall. Mater. Trans. B, 2001, vol. 32B, pp. 643-57.CrossRefGoogle Scholar
  49. 49.
    [49] I.-H. Jung, Solid State Ionics, 2006, vol. 177, pp. 765-77.CrossRefGoogle Scholar
  50. 50.
    [50] I.-H. Jung, S. Decterov and A.D. Pelton, J. Am. Ceram. Soc., 2005, vol. 88, pp. 1921-28.CrossRefGoogle Scholar
  51. 51.
    [51] I.-H. Jung, S.A. Decterov and A.D. Pelton, J. Phys. Chem. Solids, 2004, vol. 65, pp. 1683-95.CrossRefGoogle Scholar
  52. 52.
    [52] S. Chatterjee and I.-H. Jung, J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1611-21.CrossRefGoogle Scholar
  53. 53.
    [53] P. Wu, G. Eriksson and A.D. Pelton, J. Am. Ceram. Soc., 1993, vol. 76, pp. 2065-75.CrossRefGoogle Scholar
  54. 54.
    [54] F.Y. Galakhov, Izv. Akad. Nauk SSSR, Ser. Khim., 1959, vol. 4, pp. 575-81.Google Scholar
  55. 55.
    [55] D.W. Strickler and R. Roy, J. Am. Ceram. Soc., 1961, vol. 44, pp. 225-30.CrossRefGoogle Scholar
  56. 56.
    [56] R.K. Datta and R. Roy, J. Am. Ceram. Soc., 1963, vol. 46, pp. 388-90.CrossRefGoogle Scholar
  57. 57.
    [57] Y. Ikeda, H. Ito, G. Matsumoto and H. Hayashi, J. Nucl. Mater., 1981, vol. 97, pp. 47-58.CrossRefGoogle Scholar
  58. 58.
    G.K. Duncan, Phase diagram studies of the beta-aluminas, in: Department of Chemistry, University of Aberdeen, Aberdeen, 1985.Google Scholar
  59. 59.
    [59] E.N. Rao and J. Ghose, Mater. Res. Bull., 1986, vol. 21, pp. 55-60.CrossRefGoogle Scholar
  60. 60.
    [60] A.M. Lejus and R. Collongues, Compt. Rend., 1962, vol. 254, pp. 2005-07.Google Scholar
  61. 61.
    [61] I. Levin and D. Brandon, J. Am. Ceram. Soc., 1998, vol. 81, pp. 1995-2012.CrossRefGoogle Scholar
  62. 62.
    [62] G. Lambotte and P. Chartrand, J. Chem. Thermodyn., 2013, vol. 57 pp. 306-34.CrossRefGoogle Scholar
  63. 63.
    [63] F. Stewner and R. Hoppe, Z. Anorg. Allg. Chem., 1971, vol. 380, pp. 241-43.CrossRefGoogle Scholar
  64. 64.
    [64] O.L. Andreev, G.V. Zelyutin, Z.S. Martem’yanova and N.N. Batalov, Inorg. Mater., 2001, vol. 37, pp. 177-79.CrossRefGoogle Scholar
  65. 65.
    [65] M. Marezio and J.P. Remeika, J. Chem. Phys., 1966, vol. 44, pp. 3143-44.CrossRefGoogle Scholar
  66. 66.
    [66] M.W. Chase: NIST-JANAF Thermochemical Tables, American Institute of Physics for the National Institute of Standards and Technology, Washington, DC, Woodbury, 1998Google Scholar
  67. 67.
    [67] P. Tarte, Compt. Rend., 1962, vol. 254, pp. 2008-10.Google Scholar
  68. 68.
    [68] G.K. Duncan and A.R. West, Solid State Ionics, 1983, vol. 9-10, pp. 259-64.CrossRefGoogle Scholar
  69. 69.
    [69] C. Kroger and E. Fingas, Z. Anorg. Allg. Chem., 1935, vol. 224, pp. 289-304.CrossRefGoogle Scholar
  70. 70.
    T.F. Fedorov and F.I. Shamrai, Primenenie Vakuuma v Met., Akad. Nauk S.S.S.R., Inst. Met. im. A. A. Baikova, 1960, pp. 137-42.Google Scholar
  71. 71.
    [71] A. La Ginestra, M. Lo Jacono and P. Porta: J. Therm. Anal., 1972, vol. 4, pp. 5-17.CrossRefGoogle Scholar
  72. 72.
    [72] S.K. Rakshit, Y.P. Naik, S.C. Parida, S. Dash, Z. Singh, B.K. Sen and V. Venugopal, J. Solid State Chem., 2008, vol. 181, pp. 1402-12.CrossRefGoogle Scholar
  73. 73.
    [73] E.G. King, J. Am. Chem. Soc., 1955, vol. 77, pp. 3189-90.CrossRefGoogle Scholar
  74. 74.
    G.W. Hollenberg and D.E. Baker, HEDL-SA-2674-FP, 84th Annual Meeting of American Ceramic Society, Cincinnati, 1982.Google Scholar
  75. 75.
    [75] A.U. Christensen, K.C. Conway and K.K. Kelley, Bur. Mines Rep. Invest., 1960, vol. 5565, pp. 7.Google Scholar
  76. 76.
    [76] M. Asou, T. Terai and Y. Takahashi, J. Nucl. Mater., 1990, vol. 175, pp. 42-46.CrossRefGoogle Scholar
  77. 77.
    [77] H. Kleykamp, J. Nucl. Mater., 1999, vol. 270, pp. 372-75.CrossRefGoogle Scholar
  78. 78.
    I. Barin, La-Lu2O3, in: Thermochemical data of pure substances, Wiley-VCH Verlag GmbH, 2008, pp. 925–92.Google Scholar
  79. 79.
    [79] S.-G. Ma, Y.-H. Shen, T. Gao and P.-H. Chen, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 3762-70.CrossRefGoogle Scholar
  80. 80.
    D.L. Hildenbrand, L.P. Thread, W.F. Hall, F. Ju, F.S. La Viola and N.D. Potter, An experimental program for obtaining the thermodynamic properties of propellant combustion products, in: U-2055, Ford Motor Company, 1963.Google Scholar
  81. 81.
    [81] E.R. Plante and L.P. Cook, Adv. Ceram., 1990, vol. 27, pp. 129-45.Google Scholar
  82. 82.
    [82] A.F. Venero and E.F. Westrum Jr., J. Chem. Thermodyn., 1975, vol. 7, pp. 693-702.CrossRefGoogle Scholar
  83. 83.
    N.D. Potter, M.H. Boyer, F. Ju, D.L. Hildenbrand and E. Murad, Thermodynamic properties of propellant combustion products, in, Philco-Ford Corp., 1970, pp. 160.Google Scholar
  84. 84.
    [84] D.-G. Kim, M.-A. Van Ende, P. Hudon and I.-H. Jung, J. Non-Cryst. Solids, 2017, vol. 471, pp. 51-64.CrossRefGoogle Scholar
  85. 85.
    [85] E. Kordes and E. Rottig, Z. Anorg. Allg. Chem., 1951, vol. 264, pp. 34-47.CrossRefGoogle Scholar
  86. 86.
    E. Kordes, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 1935, vol. 91, pp. 193-228.Google Scholar
  87. 87.
    [87] E.J.W. Verwey and E.L. Heilmann, J. Chem. Phys., 1947, vol. 15, pp. 174-80.CrossRefGoogle Scholar
  88. 88.
    [88] P.B. Braun, Nature, 1952, vol. 170, pp. 1123.CrossRefGoogle Scholar
  89. 89.
    [89] R. Famery, F. Queyroux, J.-C. Gilles and P. Herpin, J. Solid State Chem., 1979, vol. 30, pp. 257-63.CrossRefGoogle Scholar
  90. 90.
    [90] L. Debray and A. Hardy, Compt. Rend., 1960, vol. 251, pp. 725-26.Google Scholar
  91. 91.
    N.T. Melamed, F.D.S. Barros, P.J. Viccaro and J.O. Artman, Phys. Rev. B, 1972, vol. 5, pp. 3377-87CrossRefGoogle Scholar
  92. 92.
    [92] R.C. Doman and R.N. McNally, J. Mater. Sci., 1973, vol. 8, pp. 189-91.CrossRefGoogle Scholar
  93. 93.
    [93] L.T. Menzheres, N.P. Kotsupalo and A.S. Berger, Z. Neorg. Khim., 1978, vol. 23, pp. 2804-09.Google Scholar
  94. 94.
    [94] G. Izquierdo and A.R. West, J. Am. Ceram. Soc., 1980, vol. 63, pp. 227.CrossRefGoogle Scholar
  95. 95.
    S. Hafner and F. Laves, Ordnung / Unordnung und Ultrarotabsorption III. Die Systeme MgAl2O4–Al2O3 und MgAl2O4–LiAl5O8, Z. Kristallogr.- Crys. Mat., vol. 115, 1961, pp. 321-30.Google Scholar
  96. 96.
    [96] R.K. Datta and R. Roy, Amer. Mineral., 1968, vol. 53, pp. 1456-75.Google Scholar
  97. 97.
    [97] Y. Mordekovitz and S. Hayun, J. Am. Ceram. Soc., 2016, vol. 99, pp. 2786-94.CrossRefGoogle Scholar
  98. 98.
    [98] M. Marezio, Acta Crystallogr., 1965, vol. 19, pp. 396-400.CrossRefGoogle Scholar
  99. 99.
    [99] A.T. Dinsdale, CALPHAD, 1991, vol. 15, pp. 317-425.CrossRefGoogle Scholar
  100. 100.
    O. Kubaschewski, C.B. Alcock and P.J. Spencer: Materials Thermochemistry, Pergamon Press., 1993Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Bikram Konar
    • 1
  • Marie-Aline Van Ende
    • 2
  • In-Ho Jung
    • 2
  1. 1.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of Materials Science and EngineeringResearch Institute of Advanced Materials (RIAM), Seoul National UniversitySeoulSouth Korea

Personalised recommendations