Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2611–2621 | Cite as

Influence of Structure and Mineral Association of Tuyere-Level Coke on Gasification Process

  • Minmin Sun
  • Jianliang Zhang
  • Kejiang LiEmail author
  • Ke Guo
  • Haiyang Wang
  • Ziming Wang
  • Chunhe Jiang


The gasification properties of feed coke and tuyere coke were investigated by non-isothermal thermogravimetric method under CO2 atmosphere. The physical and chemical structure features were also systematically tested, as well as the mineral composition. The pore characteristics, graphitization degree of carbon matrix, and ash content were the main factors determining the reactivity of coke. Higher Lc decreases the reactivity of tuyere coke in low temperature, while larger porosity increases the reactivity in high temperature, forming an intersection with the gasification process of the feed coke. The high content of Fe2O3 in 25 to 20 mm tuyere coke made a rapid gasification reaction. The SiC produced in the tuyere area increased the porosity of coke especially the 5 to 1 mm coke at the edge of BF, which promoted the gasification process of coke in the area.



The authors acknowledge the support of the Chinese Fundamental Research Funds for the Central Universities (FRF-TP-17-086A1), the National Science Foundation of China (51774032), and the National Key Research and Development Program of China (2017YFB0304300 & 2017YFB0304303).


  1. 1.
    WSA: World Steel Statistics 2017, Belgium, 2017.Google Scholar
  2. 2.
    IEA: Organisation for Economic Co-operation and Development, Paris, 2017.Google Scholar
  3. 3.
    Z. Guo, Z. Fu: Energy, 2010, vol. 35, pp. 4356-4360.CrossRefGoogle Scholar
  4. 4.
    M. Sun, X. Ning, J. Zhang, K. Li, G. Wang and H. Wang: China Metallurgy, 2018, vol. 28, pp. 1-8.Google Scholar
  5. 5.
    P. Duperray: Rev. Metall: Cah. Inf. Technol., 1989, vol. 86, pp. 291-303.CrossRefGoogle Scholar
  6. 6.
    X. Ma, J. Zhu, H. Xu, G. Wang, H. G. Lee and B. Zhao: Metal.Mater.Trans.B, 2018, vol. 49, pp. 190-199.CrossRefGoogle Scholar
  7. 7.
    S. Sarkar, G. S. Gupta, J. D. Litster, V. Rudolph, E. T. White and S. K. Choudhary: Metal.Mater.Trans.B, 2003, vol. 34, pp. 183-191.CrossRefGoogle Scholar
  8. 8.
    Z. Ye: University of New South Wales, Ph.D., 2013, p. 67.Google Scholar
  9. 9.
    J. Haapakangas, H. Suopajärvi, M. Iljana, A. Kemppainen, O. Mattila and E. P. Heikkinen: Metal.Mate.Trans.B, 2016, vol. 47, pp. 2357-2370.CrossRefGoogle Scholar
  10. 10.
    S. K. Gupta, V. Sahajwalla, N. Saha-Chaudhury, J. Burgo, P. Chaubal and T. Youmans: Iron.Steel.Technol, 2005, vol. 2, pp. 165-176.Google Scholar
  11. 11.
    S. Gupta, V. Sahajwalla, N. Saha-Chaudhury, J. Burgo and P. Chaubal: Iron.Steel.Technol, 2004, vol. 8, pp. 165-176.Google Scholar
  12. 12.
    S. Gupta, Z. Z. Ye, B. C. Kim, O. Kerkkonen, R. Kanniala and V. Sahajwalla: Fuel.Process.Technol, 2014, vol. 117, pp. 30-37.CrossRefGoogle Scholar
  13. 13.
    K. Li, J. Zhang, M. Sun, C. Jiang, Z. Wang, J. Zhong and Z. Liu. Fuel, 2018, vol. 225, pp. 299-310.CrossRefGoogle Scholar
  14. 14.
    K. Li, J. Zhang, Z. Liu, M. Barati, J. Zhong and M. Wei: Metal.Mater.Trans.B, 2015, vol. 46, pp. 1104-1111.CrossRefGoogle Scholar
  15. 15.
    Z. Z. Ye, S. Gupta, O. Kerkkonen, R. Kanniala and V. Sahajwalla: Isij.Int, 2013, vol. 53, pp. 181-183.CrossRefGoogle Scholar
  16. 16.
    K. Jiao, J. Zhang, Z. Liu, C. Chen and F. Liu: Iron.Steel, 2017, vol. 44, pp. 344-350.CrossRefGoogle Scholar
  17. 17.
    T. Hilding, J. Wikiström, U. Jahnsen and O. Kerkkonen: The 5th European Coke and Ironmaking Congress, 2005, pp. 1–14.Google Scholar
  18. 18.
    T. Hilding, S. Gupta, V. Sahajwalla, B. Bo and W. Jan-Olov: Isij.Int, 2015, vol. 45, pp. 1041-1050.CrossRefGoogle Scholar
  19. 19.
    S. Dong, N. Paterson, S. G. Kazarian, D. R. Dugwell and R. Kandiyoti: Energy.Fuels, 2007, vol. 21, pp. 3446-3454.CrossRefGoogle Scholar
  20. 20.
    M. Sun, X. Ning, J. Zhang, K. Li, Q. Tang and Z. Liu: J.Ther.Anal.Calor, 2017, vol. 131, pp. 983-992.CrossRefGoogle Scholar
  21. 21.
    L. Lu, V. Sahajwalla, C. Kong and D. Harris: Carbon, 2001, vol. 39, pp. 1821-1833.CrossRefGoogle Scholar
  22. 22.
    Y. Kubota, S. Nomura, T. Arima K. Kato: Tetsu.Hagane, 2010, vol. 96, pp. 328-336.CrossRefGoogle Scholar
  23. 23.
    H. Cheng, Q. Wang and S. Zhang: Metall. Res. Technol, 2017, vol. 114, pp. 114-115.CrossRefGoogle Scholar
  24. 24.
    K. Li, J. Zhang, Z. Liu, X. Ning and T. Wang: Ind. Eng. Chem. Res, 2014, vol. 53, pp. 5737-5748.CrossRefGoogle Scholar
  25. 25.
    K. Li, J. Zhang, Y. Liu, M. Barati, Z. Liu and J. Zhong: Metal.Mater.Trans.B, 2016, vol. 47, pp. 811-818.CrossRefGoogle Scholar
  26. 26.
    M. Lundgren, L. Ökvist, G. Hyllander, B. Jansson and B. Biörkman: 4th International Conference on Process Development in Iron and Steelmaking, 2012, pp. 157–68.Google Scholar
  27. 27.
    R.J. Longbottom, B.J. Monaghan, A.A. Chowdhury, M.R. Mahoney, M. H. Reid and G. Zhang: Iron. Steel, 2017, CrossRefGoogle Scholar
  28. 28.
    F. Mccarthy, V. Sahajwalla, J. Hart and N. Saha-Chaudhury: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 573-580CrossRefGoogle Scholar
  29. 29.
    A. Klimczyk, R. Stachura, M. Bernasowski: J.Ach.Mater.Manuf.Eng, 2012, vol. 55, pp. 712-715.Google Scholar
  30. 30.
    J. Gustavsson: Ph.D. Thesis, Royal Institute of Technology, 2004, pp. 8–9.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Minmin Sun
    • 1
  • Jianliang Zhang
    • 1
    • 2
  • Kejiang Li
    • 1
    Email author
  • Ke Guo
    • 3
  • Haiyang Wang
    • 1
  • Ziming Wang
    • 1
  • Chunhe Jiang
    • 1
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingP. R. China
  2. 2.School of Chemical EngineeringThe University of QueenslandSt LuciaAustralia
  3. 3.Sinosteel Metallurgical Engineering & Technology Co., LTD.BeijingP. R. China

Personalised recommendations