Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2906–2916 | Cite as

Study on the Extraction of Aluminum From Aluminum Dross Using Alkali Roasting and Subsequent Synthesis of Mesoporous γ-Alumina

  • Hongwei Guo
  • Jun Wang
  • Xiuxia Zhang
  • Feng Zheng
  • Peng Li
Article
  • 41 Downloads

Abstract

This study presents a process for recovering aluminum from aluminum dross (an industrial waste product) via an alkali roasting process and using it to synthesize mesoporous γ-alumina. The results show that the inherent chlorides in dross (KCl and NaCl) reduce Al extraction efficiency and should be removed first by water leaching. Use of salt-free dross increases the Al extraction rate (from 85 to 96 pct) within 90 minutes alkali roasting at 923 K (650 °C). In addition, an ammonium bicarbonate byproduct can be obtained from water leaching due to the hydrolysis of AlN, which can be used as a precipitating agent in the boehmite sol preparation. Synthesis of mesoporous γ-alumina was carried out by the sol-gel method with EO20PO70EO20 (P123) as a template. The prepared mesoporous γ-alumina was characterized as having a disordered mesostructure with a high pore volume of 1.02 cm3/g and surface area of 312 m2/g. Thus, we achieved highly efficient utilization of aluminum dross and yielded products with high added value. Mesoporous γ-alumina has potential applications in environmental remediation and catalysis.

Notes

Acknowledgments

The National Natural Science Foundation of China (Nos. 51704202, 51604169, 51604178), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJB450002) are duly acknowledged for their financial support. The authors also thank Soochow University and China University of Petroleum for their support with the analyses.

References

  1. 1.
    G. Gaustad, E. Olivetti, R. Kirchain. Resour Conserv Recycl, 2012, vol.58, pp.79-87.CrossRefGoogle Scholar
  2. 2.
    J. M. Cullen and J. M. Allwood, Environ. Sci. Technol. 2013, vol. 47, pp. 3057-3064.CrossRefGoogle Scholar
  3. 3.
    P. E. Tsakiridis, J. Hazard. Mater. 2012, vol. 217, pp. 1-10.CrossRefGoogle Scholar
  4. 4.
    X. L. Huang, A. E. Badawy, M. Arambewela, R. Ford, M. Barlaz, and T. Tolaymat, J. Hazard. Mater. 2014, vol. 273, pp. 192-199.CrossRefGoogle Scholar
  5. 5.
    A. Gil, Environ. Eng. Sci. 2007, vol. 24, pp.1234–1244.CrossRefGoogle Scholar
  6. 6.
    A. Meshram, K. K. Singh. Resour Conserv Recycl, 2018, vol.130, pp. 95–108.CrossRefGoogle Scholar
  7. 7.
    Y. X. Guo, Y. Y. Li, F. Q. Cheng, M. Wang, and X. M. Wang, Fuel Process. Technol. 2013, vol. 110, pp. 114-121.CrossRefGoogle Scholar
  8. 8.
    Y. X. Guo, Q. Zhao, K. Z. Yan, F. Q. Cheng, and H. H. Lou, Ind. Eng. Chem. Res. 2014, vol. 53, pp. 4518-4521.CrossRefGoogle Scholar
  9. 9.
    R. Zhang, S. L. Zheng, S. H. Ma, and Y. Zhang, J. Hazard. Mater. 2011, vol. 189, pp. 827-835.CrossRefGoogle Scholar
  10. 10.
    G. J. Ji, M. M. Li, G. H. Li, G. M. Gao, H. F. Zou, S. C. Gan, and X. C. Xu, Powder Technol. 2012, vol. 215-216, pp. 54-58.CrossRefGoogle Scholar
  11. 11.
    J. L. Zou, Y. Dai, C. G. Tian, K. Pan, B. J. Jiang, L. Wang, W. Zhou, G. H. Tian, X. Wang, Z. P. Xing, and H. G. Fu, Environ. Sci. Technol. 2012, vol. 46, pp. 4560-4566.CrossRefGoogle Scholar
  12. 12.
    EA EI-Katatny, SA Halawy, MA Mohamed, MI Zaki (2000) J. Chem. Technol. Biotechnol. 75:394-402.CrossRefGoogle Scholar
  13. 13.
    P. E. Tsakiridis, P. Oustadakis, and S. Agatzini-Leonardou, J. Environ. Chem. Eng. 2013, vol. 1, pp. 23-32.CrossRefGoogle Scholar
  14. 14.
    B. R. Das, B. Dash, B. C. Tripathy, I. N. Bhattacharya, and S. C. Das, Miner. Eng. 2007, vol. 20, pp. 252-258.CrossRefGoogle Scholar
  15. 15.
    S. R. Sarker, Z. Alam, R. Qadir, M. A. Gafur, and M. Moniruzzaman, Int. J. Min. Met. Mater. 2015, vol. 22, pp. 429-436.CrossRefGoogle Scholar
  16. 16.
    X. L. Yang, X. H. Wang, C. Wei, S. L. Zheng, and Q. Sun, Metall. Mater. Trans. B. 2013, vol. 44, pp. 45-52.CrossRefGoogle Scholar
  17. 17.
    Z. T. Yao, M. S. Xia, P. K. Sarker, and T. Chen, Fuel. 2014, vol. 120, pp. 74-85.CrossRefGoogle Scholar
  18. 18.
    D. Wang, Z. Wang, T. Qi, L. N. Wang, T.Y. Xue, Metall. Mater. Trans. B. 2015, vol. 47, pp.666-674.Google Scholar
  19. 19.
    H. Mori, J. Mater. Sci. 2003, vol. 38, pp. 3461-3468.CrossRefGoogle Scholar
  20. 20.
    A. Gil and S. A. Korili, Chem. Eng. J. 2016, vol. 289, pp. 74-84.CrossRefGoogle Scholar
  21. 21.
    E. David and J. Kopac, J. Hazard. Mater. 2013, vol. 261, pp 316-324.CrossRefGoogle Scholar
  22. 22.
    N. Murayama, N. Okajima, S. Yamaoka, H. Yamamoto, and J. Shibata, J. Eur. Ceram. Soc. 2006, vol. 26, pp. 459-462.CrossRefGoogle Scholar
  23. 23.
    T. Hiraki, A. Nosaka, and N. Okinaka, ISIJ. Int. 2009, vol. 49, pp.1644-1648.CrossRefGoogle Scholar
  24. 24.
    R. Galindo, A. López-Delgado, I. Padilla, and M. Yates, Appl. Clay Sci. 2015, vol. 115, pp. 115-123.CrossRefGoogle Scholar
  25. 25.
    A. Khaleel, Micropor. Mesopor. Mat. 2006, vol. 91, pp. 53-58.CrossRefGoogle Scholar
  26. 26.
    J. Čejka, Appl. Catal. A-Gen. 2003, vol. 254, pp. 327-338.CrossRefGoogle Scholar
  27. 27.
    H. C. Lee, H. J. Kim, S. H. Chung, K. H. Lee, H. C. Lee, and J. S. Lee, J. Am. Chem. Soc. 2003, vol. 125, pp. 2882-2883.CrossRefGoogle Scholar
  28. 28.
    M. Kuemmel, D. Grosso, C. Boissière, B. Smarsly, T. Brezesinski, P. A. Albouy, H. Amenitsch, and C. Sanchez, Angew. Chem. Int. Ed. 2005, vol. 44, pp. 4589-4592.CrossRefGoogle Scholar
  29. 29.
    L. J. Wan, H. G. Fu, K. Y. Shi, and X. Q. Tian, Mater. Lett. 2008, vol. 62, pp. 1525-1527.CrossRefGoogle Scholar
  30. 30.
    Z. R. Zhang and T. J. Pinnavaia, Angew. Chem. Int. Ed. 2008, vol. 47, pp. 7501-7504.CrossRefGoogle Scholar
  31. 31.
    W. Q. Cai, J. G. Yu, C. Anand, A. Vinu, and M. Jaroniec, Chem. Mater. 2011, vol. 23, pp. 1147-1157.CrossRefGoogle Scholar
  32. 32.
    P. F. Fulvio, R. I. Brosey, and M. Jaroniec, Appl. Mater. Inter. 2010, vol. 2, pp.588-593.CrossRefGoogle Scholar
  33. 33.
    Q. Liu, A. Q. Wang, X. H. Wang, P. Gao, X. D. Wang, and T. Zhang, Micropor. Mesopor. Mat. 2008, vol. 111, pp. 323-333.CrossRefGoogle Scholar
  34. 34.
    P. Li, M. Zhang, L. D. Teng, and S. Seetharaman, Metall. Mater. Trans. B. 2013, vol. 44, pp. 16-19.CrossRefGoogle Scholar
  35. 35.
    R. Padilla,, H. Y. Sohn, Metall. Trans. B. 1985, vol. 16B(4), pp.707-713.CrossRefGoogle Scholar
  36. 36.
    A. Kocjan, A. Dakskobler, and T. Kosmač, Cryst. Growth. Des. 2012, vol. 12, pp. 1299-1307.CrossRefGoogle Scholar
  37. 37.
    E. Davida and J. Kopac, J. Hazard. Mater. 2012, vol. 209, pp. 501-509.CrossRefGoogle Scholar
  38. 38.
    L. Y. Zhang, J. M. Mo, X. H. Li, L. P. Pan, X. Y. Liang, G. T. Wei, Metall. Mater. Trans. B. 2013, vol. 44, pp.1329-1336.CrossRefGoogle Scholar
  39. 39.
    P. Li, M. Zhang, L. D. Teng, S. Seetharaman, Metall. Mater. Trans. B. 2013, vol. 44, pp.220-232.CrossRefGoogle Scholar
  40. 40.
    I. D. Zakiriyanova and V. A. Khokhlov, Russ. Metall. 2012, vol. 8, pp. 736-738.CrossRefGoogle Scholar
  41. 41.
    G. J. Janz and R. P. T. Tomkins, J. Phys. Chem. Ref. Data. 1983, vol. 12, pp. 591-815.CrossRefGoogle Scholar
  42. 42.
    I. D. Zakiriyanova, V. A. Khokhlov, and V. A. Kochedykov, J. Mol. Liquids. 1999, vol. 83, pp. 153-162.CrossRefGoogle Scholar
  43. 43.
    V. V. Vinogradov, A. V. Agafonov, A. V. Vinogradov, T. I. Gulyaeva, V. A. Drozdov, and V. A. Likholobov, J. Sol-Gel Sci. Technol. 2010, vol. 56, pp. 333-339.CrossRefGoogle Scholar
  44. 44.
    A. Boumaza, L. Favaro, J. Lédion, G. Sattonnay, J. B. Brubach, P. Berthet, A. M. Huntz, P. Roy, and R. Tétot, J. Solid State Chem. 2009, vol. 182, pp. 1171-1176.CrossRefGoogle Scholar
  45. 45.
    E. N. Alvar, M. Rezaei, and H. A. Navaei, Powder Technol. 2010, vol. 198, pp. 275-278.CrossRefGoogle Scholar
  46. 46.
    P. V. M. Kutty and S. Dasgupta, Ceram. Int. 2013, vol. 39, pp. 7891-7894.CrossRefGoogle Scholar
  47. 47.
    X. U. Min, X. U. Qian, R. Q. Liu, Z. R. Wang, and Y. C. Zhai, Chin. J. Nonferrous Met. 2012, vol. 22, pp. 1248-1254.Google Scholar
  48. 48.
    L. J. Simpson, Electrochim. Acta. 1998, vol. 43, pp. 2543-2547.CrossRefGoogle Scholar
  49. 49.
    M Środa, C Paluszkiewicz (2008) Vib Spectrosc. 48:246-250.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Hongwei Guo
    • 1
  • Jun Wang
    • 2
  • Xiuxia Zhang
    • 2
  • Feng Zheng
    • 3
  • Peng Li
    • 1
  1. 1.Shagang School of Iron and SteelSoochow UniversitySuzhouP.R. China
  2. 2.College of Chemical EngineeringChina University of PetroleumQingdaoP.R. China
  3. 3.Research Center of Nano Science and Technology, Shanghai UniversityShanghaiP.R. China

Personalised recommendations