Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2357–2369 | Cite as

Evolution Mechanism of Oxide Inclusions in Titanium-Stabilized AISI 443 Stainless Steel

  • Jingyu Li
  • Guoguang Cheng
  • Qiang Ruan
  • Jixiang Pan
  • Xingrun Chen
Technical Publication
  • 179 Downloads

Abstract

The evolution mechanism of oxide inclusions in Ti-bearing AISI 443 stainless steel was investigated by industrial experiment and thermodynamic calculation. The chemical compositions of steel and the characteristics of inclusions in steel were analyzed. After the addition of Al, the main type of inclusions in molten steel was irregular MgO·Al2O3 spinel. The MgO·Al2O3 inclusions were modified to be spherical CaO-Al2O3-MgO inclusions after calcium treatment. Thermodynamic calculation results indicated that several ppm Ca could significantly expand the liquid oxide phase field and decrease the stability of spinel. After titanium addition, two types of inclusions were formed: spherical Al2O3-TiOx inclusions and complex CaO-TiOx-Al2O3-MgO inclusions. The compositions of steel after Ti addition were mostly located in Al2O3-TiOx stability phase field. Based on the characteristics of inclusions in steel and thermodynamic calculation, inclusions consisting of liquid and CaTiO3 were formed in molten steel with more than 10 ppm Ca during the Ti addition process. The evolution mechanism of oxide inclusions was discussed with the consideration of the initial calcium content before Ti addition.

Notes

Acknowledgments

The authors gratefully express their appreciation to the National Nature Science Foundation of China (Grant No. 51674024), the State Key Laboratory of Advanced Metallurgy at University of Science and Technology Beijing (USTB), and Jiuquan Iron and Steel Co. for supporting this work.

References

  1. 1.
    T. Liu, L. Chen, H. Bi and X. Che: Acta Metall. Sin., 2014, vol. 27, pp. 452-456.CrossRefGoogle Scholar
  2. 2.
    J. Cavazos, I. Gomez and M. Guerrero-Mata: Mater. Sci. Technol., 2011, vol. 27, pp. 530-536.CrossRefGoogle Scholar
  3. 3.
    T. Koseki and H. Inoue: J. Jpn. Inst. Met., 2001, vol. 65, pp. 644-651.CrossRefGoogle Scholar
  4. 4.
    R. Nunnington and N. Sutcliffe: Electric Furnace Conf. Proc., Phoenix, Arizona. 2001, pp. 1–39.Google Scholar
  5. 5.
    H. Zheng, W. Chen, and Y. Hu: AISTech Proc., 2004, vol. 1, pp. 937–945.Google Scholar
  6. 6.
    S. Basu, S. K. Choudhary and N. U. Girase: ISIJ Int., 2004, vol. 44, pp. 1653-1660.CrossRefGoogle Scholar
  7. 7.
    R. Maddalena, R. Rastogi, B. El-Dasher, and A.W. Cramb: Electric Furnace Conf. Proc., ISIS-AIME, 2000, pp. 811–31.Google Scholar
  8. 8.
    S. B. Lee, J. H. Choi, H. G. Lee, P. C. H. Rhee and S. M. Jung: Metall. Mater. Trans. B, 2005, vol. 36, pp. 414-416.CrossRefGoogle Scholar
  9. 9.
    J. J. Pak, J. O. Jo, S. I. Kim, W. Y. Kim, T. I. Chung, S. M. Seo, J. H. Park and D. S. Kim: ISIJ Int., 2007, vol. 47, pp. 16-24.CrossRefGoogle Scholar
  10. 10.
    K. Sakata: ISIJ Int., 2006, vol. 46, pp. 1795-1799.CrossRefGoogle Scholar
  11. 11.
    J. H. Park and H. Todoroki: ISIJ Int., 2010, vol. 50, pp. 1333-1346.CrossRefGoogle Scholar
  12. 12.
    H. Goto, K. I. Miyazawa, K. I. Yamaguchi, S. Ogibayashi and K. Tanaka: ISIJ Int., 1994, vol. 34, pp. 414-419.CrossRefGoogle Scholar
  13. 13.
    G. Ye, P. Jönsson and T. Lund: ISIJ Int., 1996, vol. 36, pp. S105-S108.CrossRefGoogle Scholar
  14. 14.
    H. Itoh, M. Hino and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28, pp. 953-956.CrossRefGoogle Scholar
  15. 15.
    J. H. Park, S. B. Lee and D. S. Kim: Metall. Mater. Trans. B, 2005, vol. 36, pp. 67-73.CrossRefGoogle Scholar
  16. 16.
    S. Yang, Q. Wang, L. Zhang, J. Li and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43, pp. 731-750.CrossRefGoogle Scholar
  17. 17.
    M. Jiang, X. Wang, B. Chen and W. Wang: ISIJ Int., 2010, vol. 50, pp. 95-104.CrossRefGoogle Scholar
  18. 18.
    Y. Gao and K. Sorimachi: ISIJ Int., 1993, vol. 33, pp. 291-297.CrossRefGoogle Scholar
  19. 19.
    G. Qian and G. Cheng: Conf. of AISTech, Indianapolis, USA, 2014, vol. 2, pp. 1823-29.Google Scholar
  20. 20.
    H. Matsuura, C. Wang, G. Wen and S. Sridhar: ISIJ Int., 2007, vol. 47, pp. 1265-1274.CrossRefGoogle Scholar
  21. 21.
    X. Yin, Y. Sun, Y. Yang, X. Bai, M. Barati and A. McLean: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3274-3284.CrossRefGoogle Scholar
  22. 22.
    I. H. Jung, G. Eriksson, P. Wu and A. Pelton: ISIJ Int., 2009, vol. 49, pp. 1290-1297.CrossRefGoogle Scholar
  23. 23.
    M. A. Van-Ende, M. Guo, R. Dekkers, M. Burty, J. Van-Dyck, P. T. Jones, B. Blanpain and P. Wollants: ISIJ Int., 2009, vol. 49, pp. 1133-1140.CrossRefGoogle Scholar
  24. 24.
    D. C. Park, I. H. Jung, P. C. Rhee and H. G. Lee: ISIJ Int., 2004, vol. 44, pp. 1669-1678.CrossRefGoogle Scholar
  25. 25.
    C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40, p. 1005-1021.CrossRefGoogle Scholar
  26. 26.
    C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2009, vol. 40, p. 1022-1034.CrossRefGoogle Scholar
  27. 27.
    C. Wang, N. T. Nuhfer and S. Sridhar: Metall. Mater. Trans. B, 2010, vol. 41, pp. 1084-1094.CrossRefGoogle Scholar
  28. 28.
    C. Wang, N. Verma, Y. Kwon, W. Tiekink, N. Kikuchi and S. Sridhar: ISIJ Int., 2011, vol. 51, pp. 375-381.CrossRefGoogle Scholar
  29. 29.
    T. Zhang, C. Liu and M. Jiang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2253-2262.CrossRefGoogle Scholar
  30. 30.
    D. Kruger and A. Garbers-Craig: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1514-1532.CrossRefGoogle Scholar
  31. 31.
    J. W. Kim, S. K. Kim, D. S. Kim, Y. D. Lee and P. K. Yang: ISIJ Int., 1996, vol. 36, pp. S140-S143.CrossRefGoogle Scholar
  32. 32.
    C.-W. Seo, S.-H. Kim, S.-K. Jo, M.-O. Suk and S.-M. Byun: Metall. Mater. Trans. B, 2010, vol. 41, pp. 790-797.CrossRefGoogle Scholar
  33. 33.
    L. Zhang and B. G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-291.CrossRefGoogle Scholar
  34. 34.
    J. Z. Li, M. Jiang, X.-F. He, W. Sun and X.-H. Wang: Metall. Mater. Trans. B, 2016, vol. 47, pp. 2386-2399.CrossRefGoogle Scholar
  35. 35.
    Y. Ren, L. Zhang, W. Yang and H. Duan: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2057-2071.CrossRefGoogle Scholar
  36. 36.
    T. Taniguchi, N. Satoh, Y. Saito, K. Kubota, A. Kumagai, Y. Tamura and T. Miki: ISIJ Int., 2011, vol. 51, pp. 1957-1966.CrossRefGoogle Scholar
  37. 37.
    E. Zinngrebe, C. Van Hoek, H. Visser, A. Westendorp and I.-H. Jung: ISIJ Int., 2012, vol. 52, pp. 52-61.CrossRefGoogle Scholar
  38. 38.
    J. H. Park and D. S. Kim: Metall. Mater. Trans. B, 2005, vol. 36, pp. 495-502.CrossRefGoogle Scholar
  39. 39.
    J. Park: Mater. Sci. Eng. A, 2008, vol. 472, pp. 43-51.CrossRefGoogle Scholar
  40. 40.
    B. Harkness and D. Dyson: METEC Congr. 94 and 2nd Eur. Continuous Casting Conf., VDEh, Duesseldorf, Germany, 1994, pp. 70-75.Google Scholar
  41. 41.
    T. Nishi and K. Shimme: Tetsu-to-Hagané, 1998, vol. 84, p. 837-843.CrossRefGoogle Scholar
  42. 42.
    G. Okuyama, K. Yamaguchi, S. Takeuchi and K.-i. Sorimachi: ISIJ Int., 2000, vol. 40, pp. 121-128.CrossRefGoogle Scholar
  43. 43.
    W.-Y. Cha, T. Miki, Y. Sasaki and M. Hino: ISIJ Int., 2008, vol. 48, pp. 729-738.CrossRefGoogle Scholar
  44. 44.
    S.-H. Seok, T. Miki and M. Hino: ISIJ Int., 2011, vol. 51, pp. 566-572.CrossRefGoogle Scholar
  45. 45.
    H. Todoroki, F. Kirihara, Y. Kanbe and Y. Miyazaki: Tetsu-to-Hagané, 2014, vol. 100, pp. 539-547.CrossRefGoogle Scholar
  46. 46.
    H. Ono, K. Nakajima, S. Agawa, T. Ibuta, R. Maruo and T. Usui: Steel Res. Int., 2015, vol. 86, pp. 241-251.CrossRefGoogle Scholar
  47. 47.
    F. Ruby-Meyer: Scand. J. Metall, 2000, vol. 29, p. 206-212.CrossRefGoogle Scholar
  48. 48.
    T. Ikemoto and K. Sawano: Taikabutsu, 1994, vol. 46, pp. 179-186.Google Scholar
  49. 49.
    S. Ogibayashi: Taikabutsu, 1994, vol. 46, pp. 166-174.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Jingyu Li
    • 1
  • Guoguang Cheng
    • 1
  • Qiang Ruan
    • 2
  • Jixiang Pan
    • 2
  • Xingrun Chen
    • 2
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Hongxing Iron & Steel Jiuquan Iron and Steel Co., Ltd.JiayuguanChina

Personalised recommendations