Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2241–2251 | Cite as

Influences of Quench Cooling Rate on Microstructure and Corrosion Resistance of Al-Cu-Mg Alloy Based on the End-Quenching Test

  • Yuan Yin
  • BingHui Luo
  • HuiBo Jing
  • ZhenHai Bai
  • Yang Gao
Article
  • 32 Downloads

Abstract

To investigate the effects of the quench cooling rate on corrosion resistance of Al-Cu-Mg alloy, an end-quenching test was conducted and the microstructures at different cooling rates were observed by SEM and TEM. Additionally, the corrosion resistance was characterized by an intergranular corrosion test and electrochemical test. Moreover, the finite element method was applied to simulate the end quenching process. The results indicate that the actual end quenching process can be approximated as one-dimensional heat transfer, and the cooling rate varies at different cooling distances. By affecting the microstructures, decreasing the cooling rate leads to a decline in the corrosion properties. Low cooling rates coarsen the constituent particles and grain boundary particles, resulting in a wide precipitation-free zone and an increase in the intensity of corrosion reactions. A high cooling rate concentrates on the intragranular precipitant, which can reduce the pitting depth and represents a conversion from localized corrosion to general corrosion.

Notes

Acknowledgments

This study was financially supported by the National Defense Supporting Research Program (JPPT-125-GJGG-08-01), and the experimental material was provided by Southwest Aluminum Co., Ltd.

References

  1. 1.
    Warner. T: Mater. Sci. Forum, 2006, vol. 519, pp. 1271–78.Google Scholar
  2. 2.
    T. Dursun, and C. Soutis: Mater. Des., 2014, vol. 56, pp. 862–71.Google Scholar
  3. 3.
    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W. S. Miller: Mater. Sci. Eng. A, 2000, vol. 280, pp. 102-107.CrossRefGoogle Scholar
  4. 4.
    ASTM B209, Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate, 2014.Google Scholar
  5. 5.
    Kandpal. B. C, Chutani. A, Gulia. A, and Sadanna. C: International Journal of Advances in Engineering & Technology, 2011, vol. 1, pp. 65.Google Scholar
  6. 6.
    Cavazos. J. L, and Colás. R: Mater. Sci. Eng. A, 2003, vol. 363, pp. 171-178.CrossRefGoogle Scholar
  7. 7.
    Dolan G. P, Flynn. R. J, Tanner. D. A, and Robinson. J. S: Mater. Sci. Technol., 2005, vol. 21(6), pp. 687-692.CrossRefGoogle Scholar
  8. 8.
    Kavalco. P. M, Canale. L.C: J. ASTM Int., 2009, vol. 6, pp.1-20.Google Scholar
  9. 9.
    Dae-Hoon Ko, Dae-Cheol Ko, and Byung-Min Kim: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2072-2083.CrossRefGoogle Scholar
  10. 10.
    Shuhui Ma, Maniruzzaman, M. D. MacKenzie, D. S, and Sisson. R. D: Metall. Mater. Trans. B, 2007, vol. 38, pp. 583-589.CrossRefGoogle Scholar
  11. 11.
    Tiryakioğlu Murat, and Ralph T. Shuey: Metall. Mater. Trans. B, 2007, vol. 38, pp. 575-582.Google Scholar
  12. 12.
    Starink. M. J, Milkereit. B, Zhang. Y, and Rometsch. P. A: Materials & Design 2015, vol. 88, pp. 958-971.CrossRefGoogle Scholar
  13. 13.
    Dongfeng Li, Yin. B, Lei. Y, Liu. S, Deng. Y. L, and Zhang. X. M: Met. Mater. Int., 2016, vol. 22, pp. 222-228.CrossRefGoogle Scholar
  14. 14.
    Liu. S. D, Chen. B, Li. C. B, Dai. Y, Deng. Y. L, and Zhang. X. M: Corros. Sci., 2015, vol. 91, pp. 203-212.CrossRefGoogle Scholar
  15. 15.
    Tanner. D. A, and Robinson. J. S: J. Mater. Process. Technol., 2004, vol. 153, pp. 998-1004.CrossRefGoogle Scholar
  16. 16.
    O.K. Abubakre, U.P. Mamaki, R.A. Muriana: J. Miner. Mater. Charact. Eng., 2009, vol. 8, pp. 303–15.Google Scholar
  17. 17.
    Chen. S. Y, Chen. K. H, Peng. G. S, Liang. X, and Chen. X. H: Transactions of Nonferrous Metals Society of China, 2012, vol. 22, pp. 47-52.CrossRefGoogle Scholar
  18. 18.
    Zhang. L, Feng. X, Li. Z, and Liu. C: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2013, vol. 227, pp. 954-964.CrossRefGoogle Scholar
  19. 19.
    Le Masson P, Loulou T, Artioukhine E, Rogeon P, Carron D, and Quemener J. J: Int. J. Therm. Sci., 2002, vol. 41, pp. 517-527.CrossRefGoogle Scholar
  20. 20.
    Li. Y. N, Zhang. Y. A, Li. X. W, Li. Z. H, Wang. G. J, Yan. H. W, Jin. L. B, Xiong. B. Q: Materials Science Forum, 2017, vol. 877, pp. 647-654.CrossRefGoogle Scholar
  21. 21.
    B. Liscic, H.M. Tensi, L.C. Canale, G.E. Totten: Quenching theory and technology, CRC Press, Boca Raton, 2010, pp. 606-655.Google Scholar
  22. 22.
    Su. J, and Hewitt. G. F: Numer. Heat Transfer, Part A, 2004, vol. 45, pp. 777-789.CrossRefGoogle Scholar
  23. 23.
    ASTM G110, Standard Practice for Evaluating Intergranular Corrosion Resistance of Heat Treatable Aluminum Alloys by Immersion in Sodium Chloride + Hydrogen Peroxide Solution, 2015.Google Scholar
  24. 24.
    A. E. Hughes, A. Boag, A. M. Glenn, D. McCulloch, T. H. Muster, C. Ryan, C. Luo, and X. Zhou: Corros. Sci., 2011, vol. 53, pp. 27-39.CrossRefGoogle Scholar
  25. 25.
    A. Boag, A. E. Hughes, A. M. Glenn, T. H. Muster, and D. McCulloch: Corros. Sci., 2011, vol. 53, pp. 17-26.CrossRefGoogle Scholar
  26. 26.
    E. McCafferty: Corros. Sci., 2005, vol. 47, pp. 3202–15.Google Scholar
  27. 27.
    Bergant. Z, Trdan. U, and Grum. J: Corros. Sci., 2014, vol. 88, pp. 372-386.CrossRefGoogle Scholar
  28. 28.
    Heakal. F. E. T, Tantawy. N. S, and Shehta. O. S: Mater. Chem. Phys., 2011, vol. 130, pp. 743-749.CrossRefGoogle Scholar
  29. 29.
    Zhang. X, Guo. M, Zhang. J, and Zhuang. L: Metall. Mater. Trans. B, 2016, vol. 47, pp. 608-620.CrossRefGoogle Scholar
  30. 30.
    Zhao. Y. L, Yang. Z. Q, Zhang. Z, Su. G. Y, and Ma. X. L: Acta Mater., 2013, vol. 61, pp. 1624-1638.CrossRefGoogle Scholar
  31. 31.
    Wang. S. C, and Starink. M. J: Int. Mater. Rev., 2005, vol. 50, pp. 193-215.CrossRefGoogle Scholar
  32. 32.
    Wang. S. C, Starink. M. J, and Gao. N: Scr. Mater., 2006, vol. 54, pp. 287-291.CrossRefGoogle Scholar
  33. 33.
    T. Ramgopal, P. I. Gouma, and G. S. Frankel: Corrosion, 2002, vol. 58, pp. 687-697.CrossRefGoogle Scholar
  34. 34.
    Hashimoto. T, Zhang. X, Zhou. X, Skeldon. P, Haigh. S. J, and Thompson. G. E: Corros. Sci., 2016, vol. 103, pp. 157-164.CrossRefGoogle Scholar
  35. 35.
    Birbilis. N, Cavanaugh. M. K, Kovarik. L, and Buchheit. R. G: Electrochem. Commun., 2008, vol. 10, pp. 32-37.CrossRefGoogle Scholar
  36. 36.
    Wang. J, Zhang. B, Wu. B, and Ma. X. L: Corros. Sci., 2016, vol. 105, pp. 183-189.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Yuan Yin
    • 1
  • BingHui Luo
    • 1
  • HuiBo Jing
    • 1
  • ZhenHai Bai
    • 1
  • Yang Gao
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaP.R. China

Personalised recommendations