Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2232–2240 | Cite as

Effect of Li2O on the Behavior of Melting, Crystallization, and Structure for CaO-Al2O3-Based Mold Fluxes

  • Lejun Zhou
  • Huan Li
  • Wanlin Wang
  • Dan Xiao
  • Lei Zhang
  • Jie Yu
Article

Abstract

The effect of Li2O content on the behavior of melting, crystallization, and molten structure for CaO-Al2O3-based mold fluxes was investigated in this article, through use of single hot thermocouple technology (SHTT), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and X-ray diffraction (XRD). The SHTT results showed that the melting temperature range of the designed mold fluxes decreases and the crystallization of mold fluxes is inhibited first and then becomes enhanced when the Li2O content increases from 1 to 6 mass pct. The FTIR and Raman spectroscopy results suggested that Li2O could release O2− ions to break the complex Al-O-Al structural unit into Al-O structure. Meanwhile, Li2O could also stabilize the structural unit of Si-O-Al by link aluminate and Q 0 Si structure through providing Li+ ions to merge into the network and compensate for the charges between Al3+ and Si4+. Besides, the XRD results indicated that the precipitation of LiAlO2 in molten slag would enhance the crystallization behavior of mold flux when Li2O content is over 4.5 mass pct.

Notes

Acknowledgments

Financial support from the National Science Foundation of China (Grant Nos. U1760202 and 51504294) and the Opening Foundation from the Ministry of Education Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology) are greatly acknowledged.

References

  1. 1.
    J.G. Speer, E.D. Moor, and K. Matlock: BAC, Shanghai, China, 2010, p. E-1.Google Scholar
  2. 2.
    S. Hong, S.Y. Shin, H.S. Kim, S. Lee, S. Kim, K. Chin, and N.J. Kim: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1870–83.CrossRefGoogle Scholar
  3. 3.
    K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, and M. Frazee: Iron Steel Technol., 2011, vol. 8, pp. 232–40.Google Scholar
  4. 4.
    J.W. Cho, K. Blazek, M. Frazee, H. Yin, J.H. Park, and S.W. Moon: ISIJ Int., 2013, vol. 53, pp. 62–70.CrossRefGoogle Scholar
  5. 5.
    L. Zhou, W. Wang, and K. Zhou: Metals, 2016, vol. 6, pp. 139–53.CrossRefGoogle Scholar
  6. 6.
    M.S. Kim, S.W. Lee, J.W. Cho, M.S. Park, H.G. Lee, and Y.B. Kang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 299–308.CrossRefGoogle Scholar
  7. 7.
    C. Shi, M.D. Seo, J.W. Cho, and S.H. Kim: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1081–97.CrossRefGoogle Scholar
  8. 8.
    W. Yan, W. Chen, Y. Yang, C. Lippold, and A. McLean: Ironmak. Steelmak., 2016, vol. 43, pp. 316–23.CrossRefGoogle Scholar
  9. 9.
    J.L. Li, Q.F. Shu, and K.C. Chou: Can. Metall. Q., 2015, vol. 54, pp. 85–91.CrossRefGoogle Scholar
  10. 10.
    B. Lu, K. Chen, W. Wang, and B. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1496–1509.CrossRefGoogle Scholar
  11. 11.
    H. Kim and I. Sohn: ISIJ Int., 2011, vol. 51, pp. 1–8.CrossRefGoogle Scholar
  12. 12.
    G.H. Kim and I. Sohn: ISIJ Int., 2012, vol. 52, pp. 68–73.CrossRefGoogle Scholar
  13. 13.
    J. Qi, C. Liu, and M. Jiang: J. Non-Cryst. Solids, 2017, vol. 475, pp. 101–107.CrossRefGoogle Scholar
  14. 14.
    D. Xiao, W. Wang, and B. Lu: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 873–81.CrossRefGoogle Scholar
  15. 15.
    Z. Zhang, G. Wen, P. Tang, and S. Sridhar: ISIJ Int., 2008, vol. 48, pp. 739–46.CrossRefGoogle Scholar
  16. 16.
    L. Zhou and W. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1548–52.CrossRefGoogle Scholar
  17. 17.
    L. Zhou, W. Wang, F. Ma, J. Li, J. Wei, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 354–62.CrossRefGoogle Scholar
  18. 18.
    D.U. Tulyaganov, S. Agathopoulos, I. Kansal, P. Valério, M.J. Ribeiro, and J.M.F. Ferreira: Ceram. Int., 2009, vol. 35, pp. 3013–19.CrossRefGoogle Scholar
  19. 19.
    K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26–34.CrossRefGoogle Scholar
  20. 20.
    G.H. Kim and I. Sohn: J. Non-Cryst. Solids, 2012, vol. 358, pp. 1530–37.CrossRefGoogle Scholar
  21. 21.
    G.H. Kim, C.S. Kim, and I. Sohn: ISIJ Int., 2013, vol. 53, pp. 170–76.CrossRefGoogle Scholar
  22. 22.
    P. Tarte: Spectrochim. Acta A, 1967, vol. 23, pp. 2127–43.CrossRefGoogle Scholar
  23. 23.
    J.H. Park, D.J. Min, and H.S. Song: ISIJ Int., 2002, vol. 42, pp. 38–43.CrossRefGoogle Scholar
  24. 24.
    F. Branda, F. Arcobello-Varlese, A. Costantini, and G. Luciani: J. Non-Cryst. Solids, 1999, vol. 246, pp. 27–33.CrossRefGoogle Scholar
  25. 25.
    J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 269–75.CrossRefGoogle Scholar
  26. 26.
    Y. Bao, J. Ma, and N. Li: Carbohyd. Polym., 2011, vol. 84, pp. 76–82.CrossRefGoogle Scholar
  27. 27.
    E. Gao, W. Wang, and L. Zhang: J. Non-Cryst. Solids, 2017, vol. 473, pp. 79–86.CrossRefGoogle Scholar
  28. 28.
    B. O. Mysen, D. Virgo, and I. Kushiro: Am. Mineralogist, 1981, vol. 66, pp. 678–701.Google Scholar
  29. 29.
    C. Huang and E. C. Behrman: J. Non-Cryst. Solids, 1991, vol. 128, pp. 310–21.CrossRefGoogle Scholar
  30. 30.
    B.O. Mysen, D. Virgo, and F.A. Seifert: Am. Mineralogist, 1985, vol. 70, pp. 317–31.Google Scholar
  31. 31.
    W. Wang, K. Blazek, and A. Cramb: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 66–74.CrossRefGoogle Scholar
  32. 32.
    L. Zhou, W. Wang, and K. Zhou: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 99–108.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Lejun Zhou
    • 1
    • 2
  • Huan Li
    • 1
    • 2
  • Wanlin Wang
    • 1
    • 2
  • Dan Xiao
    • 1
    • 2
  • Lei Zhang
    • 1
    • 2
  • Jie Yu
    • 1
    • 2
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.National Center for International Research of Clean MetallurgyCentral South UniversityChangshaChina

Personalised recommendations