Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2692–2708 | Cite as

Data-Driven Mathematical Modeling of the Effect of Particle Size Distribution on the Transitory Reaction Kinetics of Hot Metal Desulfurization

  • Tero Vuolio
  • Ville-Valtteri Visuri
  • Sakari Tuomikoski
  • Timo Paananen
  • Timo Fabritius
Article
  • 84 Downloads

Abstract

The aim of this work was to develop a prediction model for hot metal desulfurization. More specifically, the study aimed at finding a set of explanatory variables that are mandatory in prediction of the kinetics of the lime-based transitory desulfurization reaction and evolution of the sulfur content in the hot metal. The prediction models were built through multivariable analysis of process data and phenomena-based simulations. The model parameters for the suggested model types are identified by solving multivariable least-squares cost functions with suitable solution strategies. One conclusion we arrived at was that in order to accurately predict the rate of desulfurization, it is necessary to know the particle size distribution of the desulfurization reagent. It was also observed that a genetic algorithm can be successfully applied in numerical parameter identification of the proposed model type. It was found that even a very simplistic parameterized expression for the first-order rate constant provides more accurate prediction for the end content of sulfur compared to more complex models, if the data set applied for the modeling contains the adequate information.

Nomenclature

A

Area (m2)

bi

Regression coefficient for a variable i (-)

Cd

Drag coefficient (-)

d

Diameter (µm)

dka

Average particle size by means of mass transfer (µm)

d32

Sauter mean diameter (µm)

dA

Area-based mean diameter (µm)

dmean

Volume-based mean diameter (µm)

g

Gas (-)

ktot

Rate constant of the transitory reaction (1/s)

M

Molar mass (g/mol)

\( \dot{m} \)

Reagent feed rate (kg/s)

N

Normal distribution (-)

p

Particle (-)

Q

Carrier gas flow rate (m3/s)

R

Weight fraction of particles (-)

R

Universal gas constant 8.3145 J/(K mol)

R2

Squared Pearson correlation coefficient (-)

t

Time (s)

tres

Residence time (s)

ut

Terminal velocity (m/s)

V

Volume (m3)

xi

Input variable i (-)

yi

Volume fraction (-)

y

Output variable (-)

\( \hat{y} \)

Predicted output variable (-)

w

Mass fraction (-)

X

Data-matrix (-)

β

Mass transfer coefficient (m/s)

ρ

Density (kg/m3)

Ω

Fraction of contacted particles (-)

θ

Contact angle

[ ]

Species dissolved in hot metal (-)

( )

Species in slag phase (-)

{ }

Species in gas phase (-)

〈 〉

Solid species (-)

MAE

Mean absolute error of prediction (-)

SOS

Sum of squared errors (-)

Notes

Acknowledgments

This work was conducted within the Flexible and Adaptive Operations in Metal Production (FLEX) research program funded by Business Finland. The authors would like to thank Dr. Aki Sorsa for constructive comments on the manuscript. Also, the work of the analysis laboratory and specialized sampling group of SSAB Europe Oy in Raahe is greatly appreciated.

References

  1. 1.
    D. Lindström and D. Sichen: Steel Res. Int., 2014, 86, pp. 73–83.CrossRefGoogle Scholar
  2. 2.
    J. Coudure and G. Irons: ISIJ Int., 1994, 34, pp. 155–163.CrossRefGoogle Scholar
  3. 3.
    A. F. Shevchenko, A. G. Kiyashko and A. N. Malkov: Steel USSR, 1984, 14, pp. 116–117.Google Scholar
  4. 4.
    D. Lindström and D. Sichen: Metall. Trans. B, 2014, 46, pp. 83-92.Google Scholar
  5. 5.
    D. Vinoo, D. Mazumdar and S. Gupta: Ironmak. Steelmak., 2007, 34, pp. 471–476.CrossRefGoogle Scholar
  6. 6.
    R. Rastogi, K. Deb, B. Deo and R. Boom:Steel Res., 1994, 65, pp. 472–478.CrossRefGoogle Scholar
  7. 7.
    B. Deo, A. Datta, B. Kukreja, R. Rastogi and K. Deb:Steel Res., 1994, 65, pp. 528–533.CrossRefGoogle Scholar
  8. 8.
    A. Datta, M. Hareesh, P. Kalra, B. Deo and R. Boom: Steel Res., 1994, 11, pp. 466-471.CrossRefGoogle Scholar
  9. 9.
    J. Lee and K. Morita: ISIJ Int. 2004, vol. 44, pp. 235–242.CrossRefGoogle Scholar
  10. 10.
    F. Oeters: Metallurgy of steelmaking, Verlag Stahlheisen, Düsseldorf, Germany, 1994.Google Scholar
  11. 11.
    W. Ma, H. Li, Y. Cui, B. Chen, G. Liue and J. Ji: ISIJ Int. 2017, 57, pp. 214–219.CrossRefGoogle Scholar
  12. 12.
    F. Harrell: Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression and Survival Analysis, Springer, New York, NY, USA, 2001.CrossRefGoogle Scholar
  13. 13.
    U. Pal and B. Patil: Ironmak. Steelmak. 1986, 13, pp. 294–300.Google Scholar
  14. 14.
    Y. Jin, X. Bi, S. Yu: Acta Metall. Sin., 2006, vol. 16, pp. 258–264.CrossRefGoogle Scholar
  15. 15.
    L. Chiang, G. Irons, W. Lu and I. Cameron: Iron Steelmak., 1990, 17, pp. 35–52.Google Scholar
  16. 16.
    F. Oeters, P. Strohmenger and W. Pluschkell: Arch. Eisenhüttenwes. 1979, 44, pp. 727–733.CrossRefGoogle Scholar
  17. 17.
    G. Irons: Ironmak. Steelmak., 1989,16, pp. 28–36.Google Scholar
  18. 18.
    G. Irons: ISS Transactions, 1984, 5, pp. 33–45.Google Scholar
  19. 19.
    M. Nakano and K. Ito: ISIJ Int. 2016, 56, pp. 1537–1542.CrossRefGoogle Scholar
  20. 20.
    Y. Zhao and G. Irons: Ironmak. Steelmak. 1994, 21, pp. 303–308.Google Scholar
  21. 21.
    D. Lindström, P. Nortier and D. Sichen: Steel Res. Int. 2014, 86, pp. 76–88.CrossRefGoogle Scholar
  22. 22.
    H.-M. Delhey, E. Schürmann, W. Fix and L. Fiege: Stahl Eisen, 1989, 109, pp. 1207–1214.Google Scholar
  23. 23.
    R. Clift, J. Grace and M. Weber: Bubbles, Drops and Particles, Academic Press, New York, USA, 1978.Google Scholar
  24. 24.
    T. Engh, K. Larsen and K. Venås: Ironmak. Steelmak.,1979, 6, pp. 268–273.Google Scholar
  25. 25.
    M. Miyata and Y. Higuchi: ISIJ Int., 2017, 57, pp. 1742–1750.CrossRefGoogle Scholar
  26. 26.
    Y. Zhao: Doctoral thesis, McMaster University, Hamilton, Ontario, Canada, 1992.Google Scholar
  27. 27.
    S. Yousuf, M. Mohamed and S. Maitra: J. Eng. Sci. Technol., 2012, 7, pp. 1–10.Google Scholar
  28. 28.
    A. Sen and M. Srivastava, Regression Analysis: Theory, Methods, and Applications, Springer, New York, NY, USA, 1990.Google Scholar
  29. 29.
    S. Weisberg: Applied Linear Regression, John Wiley & Sons, New York, NY, USA 1985.Google Scholar
  30. 30.
    D. Goldberg: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Boston, MA, USA, 1989.Google Scholar
  31. 31.
    V. Rashtchi, E. Rahimpour and E. Rezapour: Electr. Eng., 2006, 88, pp. 417–422.CrossRefGoogle Scholar
  32. 32.
    H. Tang, X. Xing, W. Dai and Y. Xiao: J. Hydrodyn., 2010, 22, pp. 246–253.CrossRefGoogle Scholar
  33. 33.
    M. Jahromi and M. Ameli: Electr. Pow. Syst. Res., 2018, 158, pp. 82–91.CrossRefGoogle Scholar
  34. 34.
    L. Lai and J. Ma: IEEE Trans. Energy Convers., 1996, 11, pp. 523–529.CrossRefGoogle Scholar
  35. 35.
    L. Yao and W. Sethares: IEEE Trans. Signal Process., 1994, 42, pp. 927–935.CrossRefGoogle Scholar
  36. 36.
    A. Kumar and G. Roy: Metall. Mater. Trans. B, 2005, 36, pp. 901–904.CrossRefGoogle Scholar
  37. 37.
    M. Dub and R. Jalovecký: Proceedings of the 14th International Power Electronics and Motion Control Conference, 2010, pp. 9–11.Google Scholar
  38. 38.
    B. Deo and V. Srivastava: Manuf. Processes, 2003, 18, pp. 401-408.CrossRefGoogle Scholar
  39. 39.
    T. Bäck and M. Schütz: Proceedings of the 9th International Symposium on Methodologies for Intelligent Systems, 1996, pp. 158–67.Google Scholar
  40. 40.
    O. Roeva, S. Fidanova, and M. Paprzycki: Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, pp. 371–76.Google Scholar
  41. 41.
    T. Chen, K. Tang, G. Chen and X. Yao: Theoretical Computer Science, 2012, 436, pp. 54-70.CrossRefGoogle Scholar
  42. 42.
    A. Gharahbagh and V. Abolghasemi: WASJ, 2008, 5, pp. 137–142.Google Scholar
  43. 43.
    T. Sattarpour, D. Nazarpour, S. Golshannavaz and P. Siano: J. Ambient Intell. Human. Comput., 2018, 9, pp. 105–122.CrossRefGoogle Scholar
  44. 44.
    J. Nelder and R. Mead: Comput. J., 1965, 7, pp. 308–313.CrossRefGoogle Scholar
  45. 45.
    H. Dong, H. Wang and S. Chu: J. S. Afr. Inst. Min. Metall., 2014, 114, pp. 489–495.Google Scholar
  46. 46.
    K. McInnon: SIAM J. Optim., 1998, 9, pp. 148–158.CrossRefGoogle Scholar
  47. 47.
    J. Lagarias, J. Reeds, M. Wright and P. Wright: SIAM J. Optim., 1998, 9, pp. 112–147.CrossRefGoogle Scholar
  48. 48.
    MathWorks: fminsearch: https://se.mathworks.com/help/matlab/ref/fminsearch.html. Accessed 5 February 2018.
  49. 49.
    R. Picard and D. Cook: J. Am. Stat. Assoc., 1984, 79, pp. 575–583.CrossRefGoogle Scholar
  50. 50.
    N. Altman and M. Krzywinski: Nat. Methods, 2017, 14, pp. 213–214.CrossRefGoogle Scholar
  51. 51.
    N. Weiss: Elementary Statistics, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2007.Google Scholar
  52. 52.
    G. Sigworth and J. Elliott: Met. Sci., 1974, 8, pp. 298–310.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Tero Vuolio
    • 1
  • Ville-Valtteri Visuri
    • 1
  • Sakari Tuomikoski
    • 2
  • Timo Paananen
    • 2
  • Timo Fabritius
    • 1
  1. 1.Process Metallurgy Research UnitUniversity of OuluOuluFinland
  2. 2.SSAB Europe OyRaaheFinland

Personalised recommendations