Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2770–2778 | Cite as

An Efficient Electrolytic Preparation of MAX-Phased Ti-Al-C

  • Jinhang Fan
  • Dingding Tang
  • Xuhui Mao
  • Hua Zhu
  • Wei XiaoEmail author
  • Dihua WangEmail author


Large-scale deployment of MAX-phased Ti-Al-C with intriguing mechanical and physicochemical properties is significantly retarded by its harsh preparation conditions, in which costly precursors, high temperature and non-atmospheric pressure are generally imperative. We herein report an efficient electrolytic preparation of MAX-phased Ti-Al-C by direct electro-reduction of solid TiO2-Al2O3-C in molten CaCl2 at 1223 K under normal pressure. Homogeneous layered Ti3AlC2 with an oxygen content of 4300 ppm is prepared under a voltage of 3 V between the solid cathode and graphite anode for only 4 hours. The electro-reduction of TiO2-Al2O3-C exhibits a much faster speed compared with the electrolysis employing TiO2, TiO2-C and TiO2-Al2O3 as the precursors. Time-dependent electrolysis indicates that TiCxOy is the main intermediate. The generation of refractory and highly conducting TiCxOy intermediate enhances the reduction. Density functional theory simulations show a weak affinity towards oxygen of the resulting Ti3AlC2, which is beneficial to fast and thorough deoxidation. The formation of a layered structure of Ti3AlC2 is attributed to the template effect of the precursory graphite. By simply varying the precursory stoichiometry, layered Ti2AlC is also prepared. The present protocol featuring affordable feedstock, low temperature, ambient pressure, high energy efficiency and controllable stoichiometry is promising for large-scale application.



This work was funded by the National Natural Science Foundation of China (51722404 and 51674177).

Supplementary material

11663_2018_1304_MOESM1_ESM.doc (853 kb)
Supplementary material 1 (DOC 853 kb)


  1. 1.
    P. Eklund, M. Beckers, U. Jansson, H. Högberg, and L. Hultman: Thin Solid Films, 2010, vol. 518, pp. 1851-1878.CrossRefGoogle Scholar
  2. 2.
    M. Radovic and M.W. Barsoum: Am. Ceram. Soc. Bull., 2013, vol. 92, pp. 20-27.Google Scholar
  3. 3.
    L. Peng: J. Am. Ceram. Soc., 2007, vol. 90, pp. 1312-1314.CrossRefGoogle Scholar
  4. 4.
    E. Wu and E. Herold Kisi: J. Am. Ceram. Soc., 2006, vol. 89, pp. 710-713.CrossRefGoogle Scholar
  5. 5.
    D.J. Tallman, B. Anasori, and M.W. Barsoum: Mater. Res. Lett., 2013, vol. 1, pp. 115-125.CrossRefGoogle Scholar
  6. 6.
    N.V. Tzenov and M.W. Barsoum: J. Am. Ceram. Soc., 2000, vol. 83, pp. 825-832.CrossRefGoogle Scholar
  7. 7.
    M.W. Barsoum: Prog. Solid State Chem., 2000, vol. 28, pp. 201-281.CrossRefGoogle Scholar
  8. 8.
    M.W. Barsoum and M. Radovic: Ann. Rev. Mater. Res., 2011, vol. 41, pp. 195-227.CrossRefGoogle Scholar
  9. 9.
    X. Wang and Y. Zhou: Corros. Sci., 2003, vol. 45, pp. 891-907.CrossRefGoogle Scholar
  10. 10.
    W. Wang, V. Gauthier-Brunet, G. Bei, G. Laplanche, J. Bonneville, A. Joulain, and S. Dubois: Mater. Sci. Eng., A, 2011, vol. 530, pp. 168-173.CrossRefGoogle Scholar
  11. 11.
    M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi: Science, 2013, vol. 341, pp. 1502-1505.CrossRefGoogle Scholar
  12. 12.
    P. Yan, R. Zhang, J. Jia, C. Wu, A. Zhou, J. Xu, and X. Zhang: J. Power Sources 2015, vol. 284, pp. 38-43.CrossRefGoogle Scholar
  13. 13.
    M. Hu, Z. Li, H. Zhang, T. Hu, C. Zhang, Z. Wu, and X. Wang: Chem. Commun., 2015, vol. 51, pp. 13531-13533.CrossRefGoogle Scholar
  14. 14.
    B. Ding, J. Wang, Y. Wang, Z. Chang, G. Pang, H. Dou, and X. Zhang: Nanoscale, 2016, vol. 8, pp. 11136-11142.CrossRefGoogle Scholar
  15. 15.
    M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranova, M.W. Barsoum, and Y. Gogotsi: Angew. Chem. Int. Ed., 2014, vol. 53, pp. 4877-4880.CrossRefGoogle Scholar
  16. 16.
    M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi: Adv. Mater., 2014, vol. 26, pp. 992-1005.CrossRefGoogle Scholar
  17. 17.
    M. Naguib, J. Come, B. Dyatkin, V. Presser, P.-L. Taberna, P. Simon, M.W. Barsoum, and Y. Gogotsi: Electrochem. Commun., 2012, vol. 16, pp. 61-64.CrossRefGoogle Scholar
  18. 18.
    Q. Tang, Z. Zhou, and P. Shen: J. Am. Chem. Soc., 2012, vol. 134, pp. 16909-16916.CrossRefGoogle Scholar
  19. 19.
    S.S. Li, X.L. Zou, Y. Hu, X.G. Lu, X.L. Xiong, Q. Xu, H.W. Cheng and Z.F. Zhou: J. Electrochem. Soc., 2018, vol. 165, pp. E97-E107.CrossRefGoogle Scholar
  20. 20.
    X. Xie, Y. Xue, L. Li, S. Chen, Y. Nie, W. Ding, and Z. Wei: Nanoscale, 2014, vol. 6, pp. 11035-11040.CrossRefGoogle Scholar
  21. 21.
    M. Pietzka and J. Schuster: J. Phase Equilibria, 1994, vol. 15, pp. 392-400.CrossRefGoogle Scholar
  22. 22.
    O. Wilhelmsson, J.-P. Palmquist, E. Lewin, J. Emmerlich, P. Eklund, P.Å. Persson, H. Högberg, S. Li, R. Ahuja, and O. Eriksson: J. Cryst. Growth, 2006, vol. 291, pp. 290-300.CrossRefGoogle Scholar
  23. 23.
    G.Z. Chen, D.J. Fray, and T.W. Farthing: Nature, 2000, vol. 407, pp. 361-364.CrossRefGoogle Scholar
  24. 24.
    D. Wang, G. Qiu, X. Jin, X. Hu, and G.Z. Chen: Angew. Chem. Int. Ed., 2006, vol. 45, pp. 2384-2388.CrossRefGoogle Scholar
  25. 25.
    K. Jiang, X. Hu, M. Ma, D. Wang, G. Qiu, X. Jin, and G.Z. Chen: Angew. Chem. Int. Ed. Engl., 2006, vol. 45, pp. 428-32.CrossRefGoogle Scholar
  26. 26.
    A.M. Abdelkader, K.T. Kilby, A. Cox, and D.J. Fray: Chem. Rev., 2013, vol. 113, pp. 2863-86.CrossRefGoogle Scholar
  27. 27.
    D.J. Fray and C. Schwandt: Mater. Trans., 2017, vol. 58, pp. 306-312.CrossRefGoogle Scholar
  28. 28.
    D.J. Fray: Faraday Discuss., 2016, vol. 190, pp. 11-34.CrossRefGoogle Scholar
  29. 29.
    A.B. Aybar and M. Anik: J. Energy Chem., 2017, vol. 26, pp. 719-723.CrossRefGoogle Scholar
  30. 30.
    J. Sure, D.S.M. Vishnu and C. Schwandt: Appl. Mater. Today, 2017, vol. 9, pp. 111-121.CrossRefGoogle Scholar
  31. 31.
    D.S.M. Vishnu, N. Sanil, K.S. Mohandas and K. Nagarajan: Acta Metall. Sin., 2017, vol. 30, pp. 218-227.CrossRefGoogle Scholar
  32. 32.
    H. Yin, W. Xiao, X. Mao, W. Wei, H. Zhu, and D. Wang: Electrochim. Acta, 2013, vol. 102, pp. 369-374.CrossRefGoogle Scholar
  33. 33.
    W. Xiao, J. Zhou, L. Yu, D. Wang and X. W. Lou: Angew. Chem. Int. Ed., 2016, vol. 55, pp. 7427-31.CrossRefGoogle Scholar
  34. 34.
    X. Jin, P. Gao, D. Wang, X. Hu, and G.Z. Chen: Angew. Chem. Int. Ed., 2004, vol. 116, pp. 751-754.CrossRefGoogle Scholar
  35. 35.
    T. Nohira, K. Yasuda and Y. Ito: Nat. Mater., 2003, vol. 2, pp. 397-401.CrossRefGoogle Scholar
  36. 36.
    A.M. Abdelkader: J. Eur. Ceram. Soc., 2016, vol. 36, pp. 33-42.CrossRefGoogle Scholar
  37. 37.
    W. Xiao and D. Wang: Chem. Soc. Rev., 2014, vol. 43, pp. 3215-3228.CrossRefGoogle Scholar
  38. 38.
    A.M. Abdelkader and D.J. Fray: J. Eur. Ceram. Soc., 2012, vol. 32, pp. 4481-4487.CrossRefGoogle Scholar
  39. 39.
    N.J. Lane, S.C. Vogel, E.A.N. Caspi, and M.W. Barsoum: J. Appl. Phys., 2013, vol. 113, p. 183519.CrossRefGoogle Scholar
  40. 40.
    X. Wang and Y. Zhou: J. Mater. Chem., 2002, vol. 12, pp. 455-460.CrossRefGoogle Scholar
  41. 41.
    Y. Zou, Z. Sun, H. Hashimoto, and S. Tada: Mater. Sci. Eng., A, 2008, vol. 473, pp. 90-95.CrossRefGoogle Scholar
  42. 42.
    I.I. Ivanova, A.N. Demidik, M.V. Karpets, N.A. Krylova, A.P. Polushko and S.A. Firstov: Powder Metall. Met. Ceram., 2014, vol. 53, pp. 377-385.CrossRefGoogle Scholar
  43. 43.
    D. Tang, W. Xiao, L. Tian, and D. Wang: J. Electrochem. Soc., 2013, vol. 160, pp. F1192-F1196.CrossRefGoogle Scholar
  44. 44.
    L. Zhang, S. Wang, S. Jiao, K. Huang and H. Zhu: Electrochim. Acta, 2012, vol. 75, pp. 357-359.CrossRefGoogle Scholar
  45. 45.
    S. Li, X. Zou, X. Lu, K. Zheng, G. Li, C. Chen, Q. Xu and Z. Zhou: J. Electrochem. Soc., 2017, vol. 164, pp. D533-D542.CrossRefGoogle Scholar
  46. 46.
    X. Yan and D. J. Fray: J. Appl. Electrochem., 2009, vol. 39, pp. 1349-1360.CrossRefGoogle Scholar
  47. 47.
    X. Yan: Metall. Mater. Trans. B, 2008, vol. 39, pp. 348-363.CrossRefGoogle Scholar
  48. 48.
    H. Kadowaki, Y. Katasho, K. Yasuda and T. Nohira: J. Electrochem. Soc., 2018, vol. 165, pp. D83-D89.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Resource and Environmental Science, Hubei International Scientific, Technological Cooperation Base of Sustainable Resource and EnergyWuhan UniversityWuhanChina

Personalised recommendations