Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2182–2190 | Cite as

Effects of Powder Carrier on the Morphology and Compressive Strength of Iron Foams: Water vs Camphene

  • Hyeji Park
  • Teakyung Um
  • Kicheol Hong
  • Jin Soo Kang
  • Ho-Seok Nam
  • Kyungjung Kwon
  • Yung-Eun Sung
  • Heeman Choe
Technical Publication

Abstract

With its well-known popularity in structural applications, considerable attention has recently been paid to iron (Fe) and its oxides for its promising functional applications such as biodegradable implants, water-splitting electrodes, and the anode of lithium-ion batteries. For these applications, iron and its oxides can be even further utilized in the form of porous structures. In order to control the pore size, shape, and amount, we synthesized Fe foams using suspensions of micrometric Fe2O3 powder reduced to Fe via freeze casting in water or liquid camphene as a solvent through sublimation of either ice or camphene under 5 pct H2/Ar gas and sintering. We then compared them and found that the resulting Fe foam using water as a solvent (p = 71.7 pct) showed aligned lamellar macropores replicating ice dendrite colonies, while Fe foam using camphene as a solvent (p = 68.0 pct) exhibited interconnected equiaxed macropores replicating camphene dendrites. For all directions with respect to the loading axis, the compressive behavior of the water-based Fe foam with a directional elongated wall pore structure was anisotropic (11.6 ± 0.9 MPa vs 7.8 ± 0.8 MPa), whereas that of the camphene-based Fe foam with a random round pore structure was nearly isotropic (12.0 ± 1.1 MPa vs 11.6 ± 0.4 MPa).

Notes

Acknowledgments

This work was supported by the NRF-2016-Fostering Core Leaders of the Future Basic Science Program/Global Ph.D. Fellowship Program (2016H1A2A1909161) from the National Research Foundation (NRF) of Korea. This research was also supported by the International Research & Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korea (2017K1A3A1A30083363). Nam and Choe acknowledge supports from the National Research Foundation (NRF) of Korea (2009-0093814; 2017R1A2B4012871).

References

  1. 1.
    Y. Chen, T. Hoang, S. Ma: Inorg. Chem., 2012, vol. 51, pp. 12600-02.CrossRefGoogle Scholar
  2. 2.
    A.E. Gash, T.M. Tillotson, J.H. Satcher Jr., J.F. Poco, L.W. Hrubesh, R.L. Simpson: Chem. Mater., 2001, vol. 13, pp. 999-1007.CrossRefGoogle Scholar
  3. 3.
    A.B. Cundy, L. Hopkinson, R.L.D. Whitby: Sci. Total Environ., 2008, vol. 400, pp. 42-51.CrossRefGoogle Scholar
  4. 4.
    J. Chen, L. Xu, W. Li, X. Gou: Adv. Mater., 2005, vol. 17, pp. 582-86.CrossRefGoogle Scholar
  5. 5.
    Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, M. Yan: Nano Energy, 2014, vol. 5, pp. 60-66.CrossRefGoogle Scholar
  6. 6.
    Z. Liu, T. Fan, W. Zhang, D. Zhang: Microporous Mesoporous Mater., 2005, vol. 85, pp. 82-88.CrossRefGoogle Scholar
  7. 7.
    M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, MA, 2000.Google Scholar
  8. 8.
    J. Banhart: Prog. Mater Sci., 2001, vol. 46, pp. 559-632.CrossRefGoogle Scholar
  9. 9.
    L-P. Lefebvre, J. Banhart, D.C. Dunand: Adv. Eng. Mater., 2008, vol. 10, pp. 775–87.CrossRefGoogle Scholar
  10. 10.
    G.J. Davies, S. Zhen: J. Mater. Sci., 1983, vol. 18, pp. 1899–1911.CrossRefGoogle Scholar
  11. 11.
    C. Park, S. R. Nutt: J. Mater. Sci. Eng. A, 2001, vol. 299, pp. 68-74.CrossRefGoogle Scholar
  12. 12.
    J. Capek, D. Vojtech: Mater. Sci. Eng., 2014, vol. 43, pp. 494–501.CrossRefGoogle Scholar
  13. 13.
    S. K. Hyun, H. Nakajima: Adv. Eng. Mater., 2002, vol. 4, pp. 741-44.CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, R. J. Fruehan: Metall. Mater. Trans. B, 1995, vol. 26, pp. 803-12.CrossRefGoogle Scholar
  15. 15.
    S. Cao, Y. Zhu: Acta. Mater., 2009, vol. 57, pp. 2154-65.CrossRefGoogle Scholar
  16. 16.
    S. Hyun, T. Ikeda, H. Nakajima: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 201-05.CrossRefGoogle Scholar
  17. 17.
    T. Ikeda, H. Nakajima, T. Aoki: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 77-86.CrossRefGoogle Scholar
  18. 18.
    H. Park, Y. Noh, H. Choi, K. Hong, K. Kwon and H. Choe: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4760–66.CrossRefGoogle Scholar
  19. 19.
    A.A. Plunk, D.C. Dunand: Mater. Lett., 2017, vol. 191, pp. 112–15.CrossRefGoogle Scholar
  20. 20.
    R. Sepulveda, A.A. Plunk, D.C. Dunand: Mater. Lett., 2015, vol. 142, pp. 56–59.CrossRefGoogle Scholar
  21. 21.
    S. Deville: Adv. Eng. Mater., 2008, vol. 10, pp. 155–69.CrossRefGoogle Scholar
  22. 22.
    S. Deville, E. Saiz, A.P. Tomsia: Biomaterials, 2006, vol. 27, pp. 5480–89.CrossRefGoogle Scholar
  23. 23.
    S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia: Science, 2006, vol. 311, pp. 515–18.CrossRefGoogle Scholar
  24. 24.
    S. Deville, S. Meille, J. Seuba: Sci. Technol. Adv. Mater., 2015, vol. 16, 043501.CrossRefGoogle Scholar
  25. 25.
    K. Araki, J.W. Halloran: J. Am. Ceram. Soc., 2004, vol. 87, pp. 1859–63.CrossRefGoogle Scholar
  26. 26.
    C. Hong, J. Du, J. Liang, X. Zhang, J. Han: Ceram. Inter., 2011, vol. 37, pp. 3717–22.CrossRefGoogle Scholar
  27. 27.
    H. Park, M. Choi, H. Choe, D.C. Dunand: Mater. Sci. Eng. A, 2017, vol. 679, pp. 435–45.CrossRefGoogle Scholar
  28. 28.
    H. Park, H. -H. Cho, K. Kim, K. Hong, J. -H. Kim,H. Choe, D. C. Dunand: Acta Mater., 2018, vol. 142, pp. 213–25.CrossRefGoogle Scholar
  29. 29.
    R. Chen, C.-A. Wang, Y. Huang, L. Ma, W. Lin, J. Am. Ceram. Soc. 2007, 90, 3478.CrossRefGoogle Scholar
  30. 30.
    H.-Y. Lin, Y.-W. Chen, C. Li: Thermochim. Acta, 2003, vol. 400, pp. 61–67.CrossRefGoogle Scholar
  31. 31.
    H. Jo, M. Kim, H. Choi, Y.-E. Sung, H. Choe, D.C. Dunand, Morphological study of directionally freeze-cast nickel foams, Metall. Mater. Trans. E 3 (2016) 46-54.Google Scholar
  32. 32.
    K. Nam, H.-G. Kim, H. Choi, H. Park, J.S. Kang, Y.-E. Sung, H.C. Lee, H. Choe: J. Electo. Mater., 2017, vol. 46, pp. 3748–56.CrossRefGoogle Scholar
  33. 33.
    Y. Chino, D.C. Dunand: Acta Mater., 2008, vol. 56, pp. 105-13.CrossRefGoogle Scholar
  34. 34.
    J.C. Li, D.C. Dunand: Acta Mater., 2011, vol. 59, pp. 146–58.CrossRefGoogle Scholar
  35. 35.
    L.J. Gibson, M.F. Ashby: Proc. R. Soc. Lond. A, 1982, vol. 382, pp. 43–59.CrossRefGoogle Scholar
  36. 36.
    E. Hong, B.Y. Ahn, D. Shoji, J.A. Lewis, D.C. Dunand: Adv. Eng. Mater., 2011, vol. 13, pp. 1122–27.CrossRefGoogle Scholar
  37. 37.
    F.C. Campbell, Elements of Metallurgy and Engineering Alloys, ASM International, Russell Township, OH, 2008.Google Scholar
  38. 38.
    H. Choi, S. Shilko, J. Gubicza, H. Choe: J. Mech. Behav. Biomed. Mater., 2017, vol. 72, pp. 66–73CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Hyeji Park
    • 1
  • Teakyung Um
    • 1
  • Kicheol Hong
    • 1
  • Jin Soo Kang
    • 2
    • 3
  • Ho-Seok Nam
    • 1
  • Kyungjung Kwon
    • 4
  • Yung-Eun Sung
    • 2
    • 3
  • Heeman Choe
    • 1
  1. 1.School of Advanced Materials EngineeringKookmin UniversitySeoulRepublic of Korea
  2. 2.Center for Nanoparticle ResearchInstitute for Basic Science (IBS)SeoulRepublic of Korea
  3. 3.School of Chemical and Biological EngineeringSeoul National UniversitySeoulRepublic of Korea
  4. 4.Department of Energy and Mineral Resources EngineeringSejong UniversitySeoulRepublic of Korea

Personalised recommendations