Metallurgical and Materials Transactions B

, Volume 49, Issue 5, pp 2622–2632 | Cite as

Effect of Hydrogen Addition on Softening and Melting Reduction Behaviors of Ferrous Burden in Gas-Injection Blast Furnace

  • Yana QieEmail author
  • Qing Lyu
  • Xiaojie Liu
  • Jianpen Li
  • Chenchen Lan
  • Shuhui Zhang
  • Chaojie Yan


The softening and melting reduction behaviors of ferrous burden in a gas-injection blast furnace (BF) have been investigated experimentally with the assistance of H2. The results indicate that the initial softening temperature of the burden in the BF is lower than that in the traditional BF, while the opposite trend is observed for its melting and dripping temperatures, thus widening the softening range and narrowing the melting zone. As a result, the permeability of the stock column is apparently improved, owing to the decreased amount of the produced melt. After H2 gas is added, the thickness of the iron shell of the burden pellet increases, and the quantity of its liquid wüstite core decreases due to the higher reduction degree. The reduction rate of iron oxides is much faster than the carburization rate with the H2 addition, and the dripping behavior of the ferrous burden is determined by the carburization with a high reduction potential. After taking into account the effects of H2 addition on the iron oxide reduction rate, melt quantity, burden microstructure, and energy consumed by the gas-injection BF, it has been concluded that the optimal H2 content lies in the range between 10 and 15 pct.



This work was performed in the Key Laboratory for Advanced Metallurgy Technology of the North China University of Science and Technology. The authors are grateful for the support provided through the Key Program of the National Nature Science Foundation of China (Grant No. U1360205), Graduate Student Innovation Fund of North China University of Science Technology (Grant No. 2015B01), and North China University of Science and Technology Distinguished Youth Scholars Fund (Grant No. JP201508).


  1. 1.
  2. 2.
    K.D. Xu: Iron Steel, 2010, vol. 45, pp. 1-12.Google Scholar
  3. 3.
    E.P. da Rocha, V.S. Guiherme, J.A. de Castro, Y. Sazaki, and J. Yagi; Journal of Materials Research and Technology, 2013, vol. 2, pp. 255-262.CrossRefGoogle Scholar
  4. 4.
    K.S. Abdel Halim: Journal of Iron and Steel Research, International, 2013, vol. 20, pp. 40-46.CrossRefGoogle Scholar
  5. 5.
    M.S. Chu, H. Nogami, and J.I. Yagi: ISIJ International, 2004, vol. 44, pp. 801-808.CrossRefGoogle Scholar
  6. 6.
    O. Lingiardi, O. Burrai, C.G. Fuentealba, P. Etchevarne, and J.M. Gonzalez: ICSTI/Ironmaking Conference Proceedings, ISS, Warrendale, PA, 1998, vol. 57, p. 135.Google Scholar
  7. 7.
    J.M. Steer, and R. Marsh, M. Greenslade, and A.Robinson: Fuel, 2015, vol. 151, pp. 40-49.CrossRefGoogle Scholar
  8. 8.
    S.W. Du, C.P. Yeh, W.H. Chen, C.H. Tsai, and J.A. Lucas: Fuel, 2015, vol. 143, pp. 98-106.CrossRefGoogle Scholar
  9. 9.
    V. Trinkel, N. Kieberger, T. Bürgler, H. Rechberger and J. Fellner: Journal of Cleaner Production, 2015, vol. 94, pp. 312-320.CrossRefGoogle Scholar
  10. 10.
    C. Wanga, M. Larsson, J. Lövgren, P. Mellin, W. Yang, H. Salman, and A. Hultgren: Energy Procedia, 2014, vol. 61, pp. 2184-2187.CrossRefGoogle Scholar
  11. 11.
    W.H. Chen, C.L. Hsu, S.W. Du: Energy, 2015, vol. 86, pp. 758-771.CrossRefGoogle Scholar
  12. 12.
    W.H. Chen, M.R. Lin, A.B. Yu, S.W. Du, and T.S. Leu: International Journal of Hydrogen Energy, 2012, vol. 37, pp. 11748-11758.CrossRefGoogle Scholar
  13. 13.
    H. Ghanbari, F. Pettersson, and H. Saxén: Chemical Engineering Science, 2015, vol. 129, pp. 208-222.CrossRefGoogle Scholar
  14. 14.
    P. Jin, Z. Jiang, C. Bao, S. Hao, and X. Zhang: Resources, Conservation and Recycling, 2015, vol. 3062, pp. 1-3.Google Scholar
  15. 15.
    G. Danloy, A. Berthelemot, M. Grant, J. Borlee: Revue de Metallurgie, 2009, vol. 106, pp. 1-8.CrossRefGoogle Scholar
  16. 16.
    L. Hooey, A. Tobiesen, J. Johns, and S. Santos: Energy Procedia, 2013, vol. 37, pp. 7139-7151.CrossRefGoogle Scholar
  17. 17.
    R. Schott: Iron Steel Technology, 2013, vol. 3, pp. 63-75.Google Scholar
  18. 18.
    H.B. Luengen, M. Peters, and P. Schmöle: Iron Steel Technology, 2012, vol. 9, pp.63-76.Google Scholar
  19. 19.
    Q. Lyu, F.M. Li, X.B. Li: Iron&Steel, 2008, vol. 43, pp. 17-21.Google Scholar
  20. 20.
    F.M. Li, Q. Lyu, X.B. Li: Iron&Steel, 2007, vol. 42, pp.12-15.Google Scholar
  21. 21.
    H. Guo, F.M. Li, Q. Lyu: Journal of Hebei Institute of Technology, 2007, vol. 29, pp. 27-31.Google Scholar
  22. 22.
    I. Shigaki, S. Shirouchi, K. Tokutake, N. Hasegawa: ISIJ International, 1990, vol. 30, pp. 199-207.CrossRefGoogle Scholar
  23. 23.
    P.F. Nogueira and R.J. Fruehan: Metallurgical and Materials Transactions B, 2004, vol. 35B, pp. 829-838.CrossRefGoogle Scholar
  24. 24.
    P.F. Nogueira and R.J. Fruehan: Metallurgical and Materials Transactions B, 2005, vol. 35B, pp.583-590.CrossRefGoogle Scholar
  25. 25.
    T. Nishimura, K. Higuchi, M. Naito, and K. Kunitomo: ISIJ International, 2011, vol. 51, pp.1316-1321.CrossRefGoogle Scholar
  26. 26.
    K. Sunahara, T. Natsui, K. Shizawa, Y. Ujisawa: ISIJ International, 2011, vol. 51, pp.1322-1332.CrossRefGoogle Scholar
  27. 27.
    M. Matsumura, M. Hoshi, T. Kawaguchi: ISIJ International, 2005, vol. 45, pp. 594-602.CrossRefGoogle Scholar
  28. 28.
    X.W. An, J.S. Wang, R.Z. Lan, Y.H. Han, Q.G. Xue: Journal of Iron and Steel Research, International, 2013, vol. 20, pp.11-16.CrossRefGoogle Scholar
  29. 29.
    H.J. Zhang, X.F. She, Y.H. Hua, J.S. Wang, F.B. Zeng, Q.G. Xue: Journal of Iron and Steel Research, International, 2015, vol. 22, pp.297-303.CrossRefGoogle Scholar
  30. 30.
    W.J. Yang, Z.Y. Zhou, A.B. Yu, D. Pinson: Powder Technology, 2015, vol. 279, pp. 134-145.CrossRefGoogle Scholar
  31. 31.
    Z.K. Liang: Master thesis, Central South University, Changsha, China, 2013.Google Scholar
  32. 32.
    Z.C. Wang: Master thesis, Northeastern University, Shenyang, China, 2009.Google Scholar
  33. 33.
    L.Y. Yi: PhD thesis, Central South University, Changsha, China, 2013.Google Scholar
  34. 34.
    T. Bakker: PhD thesis, Delft University of Technology, Delft, Netherlands, 1999.Google Scholar
  35. 35.
    C.E. Loo, L.T. Matthews, D.P. O’Dea: ISIJ International, 2011, vol. 51, pp.930-938.CrossRefGoogle Scholar
  36. 36.
    K. Higuchi, M. Naito, M. Nakano, Y. Takamoto: ISIJ International, 2004, vol. 44, pp.2057-2066.CrossRefGoogle Scholar
  37. 37.
    X.H. Huang: Principles of steel metallurgy, third ed., Press of Metallurgy Industry, Beijing: 2010, p. 140.Google Scholar
  38. 38.
    X.H. Huang: Principles of steel metallurgy, third ed., Press of Metallurgy Industry, Beijing: 2010, p. 160.Google Scholar
  39. 39.
    Y. Iguchi, S. Endo: ISIJ International, 2004, vol. 44, pp.1991-1998.CrossRefGoogle Scholar
  40. 40.
    G.Y. Ren: Ironmaking, Press of Metallurgical Industry, Beijing: 2008, pp.239-241.Google Scholar
  41. 41.
    J.X. Liu, G.J. Cheng, Z.G. Liu, M.S. Chu, X.X. Xue: International Journal of Mineral Processing, 2015, vol. 142, pp.113-118.CrossRefGoogle Scholar
  42. 42.
    K. Higuchi, Y. Takamoto, T. Orimoto, T. Sato, F. Koizumi, K. Shinagawa, H. Furuta: Nippon Steel Technical Report, 2006, vol. 94, pp. 36-41.Google Scholar
  43. 43.
    Y.N. Qie, Q. Lyu, J.P. Li, C.C. Lan, X.J. Liu: ISIJ International, 2017, vol. 57, pp.404-412.CrossRefGoogle Scholar
  44. 44.
    Q. Lyu, Y.N. Qie, X.J. Liu, C.C. Lan, J.P. Li, S. Liu. Thermochimica Acta, 2017, vol. 648, pp. 79–90.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Yana Qie
    • 1
    Email author
  • Qing Lyu
    • 1
  • Xiaojie Liu
    • 1
  • Jianpen Li
    • 1
  • Chenchen Lan
    • 1
  • Shuhui Zhang
    • 1
  • Chaojie Yan
    • 1
  1. 1.College of Metallurgy & Energy, Key Laboratory for Advanced Metallurgy TechnologyNorth China University of Science and TechnologyTangshanChina

Personalised recommendations