Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1919–1924 | Cite as

Effect of a High Magnetic Field on γ′ Phase for Ni-Based Single Crystal Superalloy During Directional Solidification

  • Weidong Xuan
  • Jian Lan
  • Dengke Zhao
  • Chuanjun Li
  • Xingfu Shang
  • Yunbo Zhong
  • Xi Li
  • Zhongming Ren


The effect of a high magnetic field on the γ′ phase of Ni-based single crystal superalloy during directional solidification is investigated experimentally. The results clearly indicate that the magnetic field significantly reduces the γ′ phase size. Further, the quenching experiment is carried out, and the results found that the length of mushy zone is obviously decreased under a high magnetic field. Based on both experimental results and nucleation mechanism, it is found that the decrease of γ′ phase size should be attributed to the fact that a high magnetic field causes the increase of temperature gradient in front of solid/liquid interface and leads to the increase of undercooling of γ′ phase.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51604172, U1560202) and the Major Program of National Natural Science Foundation of China (No. 51690162).


  1. 1.
    M. McLean: Directionally Solidified Materials for High Temperature Service, The Metals Society, London, 1983, pp. 161–63.Google Scholar
  2. 2.
    T.T. Zuo, X. Yang, Peter K. Liaw, and Y. Zhang: Intermetallics., 2015, vol. 67, pp. 171–76.CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, C.C. Koch, S.G. Ma, H. Zhang, and Y. Pan: Fabrication Routes. In High-Entropy Alloys: Fundamentals and Applications, Springer-Nature, 2016, pp. 151–79.Google Scholar
  4. 4.
    T. Pollock and A.S. Argon: Acta. Metall. Mater., 1992, vol. 40, pp. 1–30.CrossRefGoogle Scholar
  5. 5.
    L. Nguyen, R.P. Shi, Y.Z. Wang, and M.D. Graef: Acta Mater., 2016, vol. 103, pp. 322–33.CrossRefGoogle Scholar
  6. 6.
    M. Durand-Charre: The Microstructure of Superalloys, CRC Press, Boca Raton, 1998.Google Scholar
  7. 7.
    P. Caron and T. Khan: Mater. Sci. Eng., 1983, vol. 61, pp. 173–84.CrossRefGoogle Scholar
  8. 8.
    L. Shui, S.G. Tian, T. Jin, and Z.Q. Hu: Mater. Sci. Eng. A, 2006, vol. 418, pp. 229–35.CrossRefGoogle Scholar
  9. 9.
    C.L. Brundidge, D. Vandrasek, B. Wang, and T.M. Pollock: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 965–76.CrossRefGoogle Scholar
  10. 10.
    J. Zhang and L.H. Lou: J. Mater. Sci. Technol., 2007, vol. 23 pp. 289–99.Google Scholar
  11. 11.
    L. Liu, T.W. Huang, J. Zhang, and H.Z. Fu: Mater. Lett., 2007, vol. 61, pp. 227–30.CrossRefGoogle Scholar
  12. 12.
    X.B. Zhao, L. Liu, C.B. Yang, Y.F. Li, J. Zhang, Y.L. Li, and H.Z. Fu: J. Alloys Compd., 2011, vol. 509, pp. 9645–49.CrossRefGoogle Scholar
  13. 13.
    M Konter, E Kats, N Hofmann: in Superalloys, TM Pollock, RD Kissinger, RR Bowman, KA Green, M McLean, SL Olson, and JJ Schirra, eds., TMS, Warrendale, 2000, pp. 189–200.Google Scholar
  14. 14.
    F. Wang, D.X. Ma, Y.R. Mao, S. Bogner, and A. Bührig-Polaczck: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 76–84.CrossRefGoogle Scholar
  15. 15.
    C. Vives and C. Perry: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 479–96.CrossRefGoogle Scholar
  16. 16.
    Y.B. Zhong, P.W. Zhou, J.F. Zhou, H. Wang, L.J. Fan, L.C. Dong, T.X. Zheng, and W.W. Shen: Appl. Surf. Sci., 2014, vol. 309, pp. 278–84.CrossRefGoogle Scholar
  17. 17.
    P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: J. Cryst. Growth, 1998, vol. 183, pp. 690–704.CrossRefGoogle Scholar
  18. 18.
    W.D. Xuan, Z.M. Ren, and C.J. Li: J. Alloys Compd., 2015, vol. 621, pp. 10–17.CrossRefGoogle Scholar
  19. 19.
    X. Li, Y. Fautrelle, and Z. M. Ren: Acta Mater. 2008, vol. 56, pp. 3146–61.CrossRefGoogle Scholar
  20. 20.
    W.V. Youdelis, and J.R. Cahoon: Can. J. Phys., 1970, vol. 48, pp. 805–8.CrossRefGoogle Scholar
  21. 21.
    X. Li, D. F. Du, A. Gagnoud, Z.M. Ren, Y. Fautrelle, K. Zaidat, and R. Moreau: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5584–600.CrossRefGoogle Scholar
  22. 22.
    W.D. Xuan, H. Liu, C.J. Li, Z.M. Ren, Y.B. Zhong, X. Li, and G.H. Cao: Metall. Mater. Trans. B, 2016, vol. 47B, pp.828–33.CrossRefGoogle Scholar
  23. 23.
    X. Li, Y. Fautrelle, A. Gagnoud, D. Du, J. Wang, Z. Ren, H. Nguyen-Thi, and N. Mangelinck-Noel: Acta Mater., 2014, vol. 64, pp. 367–81.CrossRefGoogle Scholar
  24. 24.
    X.P. Guo, H.Z. Fu, and J.H. Sun: Metall. Trans. A, 1997, vol. 28A, pp. 997–1009.CrossRefGoogle Scholar
  25. 25.
    J.M. Xiao: Alloy Phase and Its Transformation, The Chinese Metallurgical Publishing House, Beijing, 1987, pp. 233–35.Google Scholar
  26. 26.
    W.L. Ren, L. Lu, G.Z. Yuan, W.D. Xuan, Y.B. Zhong, J.B. Yu, and Z.M. Ren: Mater. Lett., 2013, vol. 100, pp. 223–6.CrossRefGoogle Scholar
  27. 27.
    W.D. Xuan, J. Lan, H. Liu, C.J. Li, J Wang, W.L. Ren, Y.B. Zhong, X. Li, and Z.M. Ren: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3804–13.CrossRefGoogle Scholar
  28. 28.
    M Yamaguchi, Y Tanimoto (2006) Magneto-science. Springer Verlag, New York, pp. 15–17.CrossRefGoogle Scholar
  29. 29.
    J.P. Gu, C. Beckermann, and A.F. Giamei: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1533–42.CrossRefGoogle Scholar
  30. 30.
    F. Wang, D.X. Ma, J. Zhang, S. Bogner, and A. Bührig-Polaczck: J Mater Process Tech, 2014, vol. 214, pp. 3112–21.CrossRefGoogle Scholar
  31. 31.
    X.B. Zhao, L. Liu, Z.H. Yu, W.G. Zhang, J. Zhang, and H.Z. Fu: J. Mater. Sci., 2010, vol. 45, pp. 6101–7.CrossRefGoogle Scholar
  32. 32.
    M. D. Dupouy, D. Camel, and J. J. Favier: Acta Metall Mater, 1992, vol. 40, pp. 1791–801.CrossRefGoogle Scholar
  33. 33.
    S. Steinbach and L. Ratke: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1388–94.CrossRefGoogle Scholar
  34. 34.
    J. Hui, R. Tiwari, X. Wu, S.N. Tewari, and R. Trivedi: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3499–510.CrossRefGoogle Scholar
  35. 35.
    W.J. Boettinger, F.S. Biancaniello, and S.R. Coriell: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 321–27.CrossRefGoogle Scholar
  36. 36.
    P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: Acta Mater., 1998, vol. 46, pp. 4067–79.CrossRefGoogle Scholar
  37. 37.
    P. Lehmann, R. Moreau, D. Camel, and R. Bolcato: J. Cryst. Growth, 1998, vol. 183, pp. 690–704.CrossRefGoogle Scholar
  38. 38.
    Y.Y. Khine and S. Walker: J. Cryst. Growth, 1998, vol. 183, pp. 150–58.CrossRefGoogle Scholar
  39. 39.
    P. Dolda, F.R. Szofranb, and K.W. Benz: J. Cryst. Growth, 2006, vol. 291, pp. 1–7.CrossRefGoogle Scholar
  40. 40.
    H. Yasuda, T. Yoshimoto, T. Mizuguchi, Y. Tamura, T. Nagira, and M.Yoshiya: ISIJ Int., 2007, vol. 47, pp. 612–18.CrossRefGoogle Scholar
  41. 41.
    G. Pottlacher, H. Hosaeus, B. Wilthan, E. Kaschnitb, and A. Seifter: Thermochim. Acta, 2002, vol. 382, pp. 255–67.CrossRefGoogle Scholar
  42. 42.
    M.D. Dupouy and D. Camel: J. Cryst. Growth, 1998, vol.183, pp. 469–89.CrossRefGoogle Scholar
  43. 43.
    T. Zhang, W.L. Ren, J.W. Dong, X. Li, Z.M. Ren, G.H. Cao, Y.B. Zhong, K. Deng, Z.S. Lei, and J.T. Guo: J. Alloys Compd., 2009, vol. 487, pp. 612–17.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Weidong Xuan
    • 1
  • Jian Lan
    • 1
  • Dengke Zhao
    • 1
  • Chuanjun Li
    • 1
  • Xingfu Shang
    • 1
  • Yunbo Zhong
    • 1
  • Xi Li
    • 1
  • Zhongming Ren
    • 1
  1. 1.State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and EngineeringShanghai UniversityShanghaiChina

Personalised recommendations