Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1909–1918 | Cite as

On the Alternate Stirring Mode of F-EMS for Bloom Continuous Castings

  • Haibo Sun
  • Liejun Li
  • Dexin Ye
  • Xuexing Wu
Article

Abstract

Local solute transportation behaviors under different alternate stirring parameters of final electromagnetic stirring (F-EMS) and their influences on the internal quality of the as-cast bloom are compared and evaluated based on a developed coupled model of electromagnetism, heat, and solute transport. To this end, plant trials were conducted in Shaoguan Steel, China. Under the action of F-EMS, a negative segregation band in an ellipse shape is observed at the central area of strand cross section, where the minimum carbon segregation degree is decreased from 0.98 to 0.84 as the stirring duration increases from 15 to 35 seconds in the alternate stirring mode, while it is reduced to 0.805 in the continuous stirring mode. The white band and shrinkage cavity are simultaneously observed at strand center under the conditions of continuous stirring mode, and alternate stirring mode with a stirring period of 35 seconds because of the local over-sustaining melt rotation. In contrast, the V-shape porosity belt width and strand center segregation fluctuation range increase from 60 to 90 mm and from 0.12 to 0.30, respectively, as the stirring duration is reduced from 25 to 15 seconds in the alternate stirring mode because of the poor mixing of the local melt at the strand center.

Notes

Acknowledgments

The authors greatly appreciate the support from National Natural Science Foundation of China (Grant No. 51704078), the Province Natural Science Fund of Guangdong (Grant No. 2017A030313312), and the Talent research start-up program of Foshan university (Grant No. gg040942).

References

  1. 1.
    S.K. Choudhary, S. Ganguly, A. Sengupta, and V. Sharma: J. Mater. Process Tech., 2017, vol. 243, pp 312-21.CrossRefGoogle Scholar
  2. 2.
    J. Li, M. Wu, A. Ludwig, and K. Abdellah: Int. J. Heat. Mass. Tran., 2014, vol. 72, pp 668-79.CrossRefGoogle Scholar
  3. 3.
    J. Domitner, M. Wu,, A. Kharicha, A. Ludwig, B. Kaufmann, J. Reiter, and T. Schaden: Metall. Mater. Trans A, 2014, vol. 45, pp 1415–34.CrossRefGoogle Scholar
  4. 4.
    A. Ludwig, M. Wu, and A. Kharicha: Metall. Mater. Trans A, 2015, vol.46, pp 4854-67.CrossRefGoogle Scholar
  5. 5.
    V. Ludlow, A. Normanton, A. Anderson, M. Thiele, J. Ciriza, J. Laraudogoitia and W. van der Knoop: Ironmak. Steelmak., 2005, vol. 32, pp 68-74.CrossRefGoogle Scholar
  6. 6.
    D. Jiang, and M. Zhu: Metall. Mater. Trans B, 2016, vol. 47, pp 3446-58.CrossRefGoogle Scholar
  7. 7.
    D. Jiang, and M. Zhu: Steel Res. Int., 2015, vol. 86, pp 993-1003.CrossRefGoogle Scholar
  8. 8.
    K. Suzuki, S. Yutaka, M. Kenji, N. Kyoji and K. Masanori: Trans. ISIJ, 1984, vol. 24, pp 940-49.CrossRefGoogle Scholar
  9. 9.
    C. Xiao, J. Zhang, Y. Luo, D. Wei, L. Wu, and S. Wang: J. Iron. Steel. Res. Int., 2013, vol. 20, pp 13-20.CrossRefGoogle Scholar
  10. 10.
    K. H. Spitzer, M. Dubke, and K. Schwerdtfeger: Metall. Mater. Trans B, 1986. vol. 17, pp 119-31.CrossRefGoogle Scholar
  11. 11.
    M. Long, and D. Chen: Steel Res. Int., 2011, vol. 82, pp 847-56.CrossRefGoogle Scholar
  12. 12.
    Y. Xu, R. J. Xu, Z. J. Fan, C. B. Li, A. Y. Deng, and E. G. Wang: Int. J. Min. Met. Mater., 2016, vol. 23. pp 534-41.CrossRefGoogle Scholar
  13. 13.
    K. Ayata, T. Mori, T. Fujimot, T. Ohnishi, and I. Wakasugi: Trans. ISIJ, 1984, vol. 24, pp 931-39.CrossRefGoogle Scholar
  14. 14.
    K. S. Oh, and Y. Chang: ISIJ Int., 1995, vol. 35, pp 866-75.CrossRefGoogle Scholar
  15. 15.
    H. Sun, L. Li, X. Cheng, W. Qiu, Z. Liu, and L. Zeng: Ironmak. Steelmak., 2015, vol. 42, pp 439-49.CrossRefGoogle Scholar
  16. 16.
    D. J. Hurtuk, and A. A. Tzavaras: Metall. Mater. Trans B, 1977, vol. 8, pp 243-51.CrossRefGoogle Scholar
  17. 17.
    W. Du, K. Wang, C. Song, H. Li, M. Jiang and Q. Zhai: Ironmak. Steelmak., 2008, vol. 35, pp 153-56.CrossRefGoogle Scholar
  18. 18.
    A. Scholes: Ironmak. Steelmak., 2005, vol. 32, pp 101-08.CrossRefGoogle Scholar
  19. 19.
    D. Jiang, and M. Zhu: Metall. Mater. Trans B, 2017, vol. 48, pp 444-55.CrossRefGoogle Scholar
  20. 20.
    S. Luo, F. Piao, D. Jiang, W. Wang, and M. Zhu: J. Iron. Steel. Res. Int., 2014, vol. 21, pp 51-5.CrossRefGoogle Scholar
  21. 21.
    21. T. Toh, E. Takeuchi, M. Hojo, H. Kawai, and S. Matsumura: ISIJ Int., 1997, vol. 37, pp 1112-19.CrossRefGoogle Scholar
  22. 22.
    J. Zeng, W. Chen, S. Zhang, Y. Li, and Q. Wang: ISIJ Int., 2015, vol. 55, pp 2142-49.CrossRefGoogle Scholar
  23. 23.
    H. Sun, J. Zhang: Metall. Mater. Trans B., 2014, vol. 45, pp 1133-49.CrossRefGoogle Scholar
  24. 24.
    M. R. Bridge, and G. D. Rogers: Metall. Mater. Trans B., 1984, vol. 15, pp 581-89.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Materials Science and Energy EngineeringFoshan UniversityFoshanChina
  2. 2.School of Mechanical and Automotive EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.Guangdong Shaoguan Iron & Steel Co., Ltd. Baowu Steel GroupShaoguanChina

Personalised recommendations