Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1588–1596 | Cite as

Improving the Elevated-Temperature Properties by Two-Step Heat Treatments in Al-Mn-Mg 3004 Alloys

  • K. Liu
  • H. Ma
  • X. Grant Chen
Topical Collection: Advances in Materials Manufacturing and Processing
Part of the following topical collections:
  1. Advances in Materials Manufacturing III


In the present work, two-step heat treatments with preheating at different temperatures (175 °C, 250 °C, and 330 °C) as the first step followed by the peak precipitation treatment (375 °C/48 h) as the second step were performed in Al-Mn-Mg 3004 alloys to study their effects on the formation of dispersoids and the evolution of the elevated-temperature strength and creep resistance. During the two-step heat treatments, the microhardness is gradually increased with increasing time to a plateau after 24 hours when first treated at 250 °C and 330 °C, while there is a minor decrease with time when first treated at 175 °C. Results show that both the yield strength (YS) and creep resistance at 300 °C reach the peak values after the two-step treatment of 250 °C/24 h + 375 °C/48 h. The formation of dispersoids is greatly related to the type and size of pre-existing Mg2Si precipitated during the preheating treatments. It was found that coarse rodlike β-Mg2Si strongly promotes the nucleation of dispersoids, while fine needle like β-Mg2Si has less influence. Under optimized two-step heat treatment and modified alloying elements, the YS at 300 °C can reach as high as 97 MPa with the minimum creep rate of 2.2 × 10−9 s−1 at 300 °C in Al-Mn-Mg 3004 alloys, enabling them as one of the most promising candidates in lightweight aluminum alloys for elevated-temperature applications.



The authors acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and Rio Tinto Aluminum through the NSERC Industry Research Chair in the Metallurgy of Aluminum Transformation at the University of Quebec at Chicoutimi.


  1. 1.
    Y.J. Li, A.M.F. Muggerud, A. Olsen, and T. Furu: Acta Mater., 2012, vol. 60, pp. 1004–14.CrossRefGoogle Scholar
  2. 2.
    K. Liu and X.G. Chen: Mater. Des., 2015, vol. 84, pp. 340–50.CrossRefGoogle Scholar
  3. 3.
    K. Liu and X.G. Chen: Metall. Mater. Trans. B, 2015, vol. 47B, pp. 3291–3300.Google Scholar
  4. 4.
    Y.J. Li and L. Arnberg: Acta Mater., 2003, vol. 51, pp. 3415–28.CrossRefGoogle Scholar
  5. 5.
    R. Kamat: JOM, 1996, vol. 48, pp. 34–38.CrossRefGoogle Scholar
  6. 6.
    Q. Du, W.J. Poole, M.A. Wells, and N.C. Parson: Acta Mater., 2013, vol. 61, pp. 4961–73.CrossRefGoogle Scholar
  7. 7.
    K. Liu, H. Ma, and X.G. Chen: J. Alloys Compd., 2017, vol. 694, pp. 354–65.CrossRefGoogle Scholar
  8. 8.
    K. Liu and X.-G. Chen: J. Mater. Res., 2017, vol. 32, pp. 2585–93.CrossRefGoogle Scholar
  9. 9.
    K. Liu, A.M. Nabawy, and X.-G. Chen: Trans. Nonferrous Met. Soc. China, 2017, vol. 27, pp. 771–78.CrossRefGoogle Scholar
  10. 10.
    H.-W. Huang and B.-L. Ou: Mater. Des., 2009, vol. 30, pp. 2685–92.CrossRefGoogle Scholar
  11. 11.
    A.M.F. Muggerud, E.A. Mørtsell, Y. Li, and R. Holmestad: Mater. Sci. Eng., A, 2013, vol. 567, pp. 21–28.CrossRefGoogle Scholar
  12. 12.
    Y. Li and L. Arnberg (2013) Essential Readings in Light Metal. Wiley, Hoboken, NJ, pp. 1021–27CrossRefGoogle Scholar
  13. 13.
    K. Liu and X.G. Chen: Mater. Sci. Eng. A, 2017, vol. 697, pp. 141–48.CrossRefGoogle Scholar
  14. 14.
    Y.-L. Deng, Y.-Y. Zhang, L. Wan, A. Zhu, and X.-M. Zhang: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2470–77.CrossRefGoogle Scholar
  15. 15.
    Z. Guo, G. Zhao, and X.G. Chen: Mater. Charact., 2015, vol. 102, pp. 122–30.CrossRefGoogle Scholar
  16. 16.
    Z. Jia, G. Hu, B. Forbord, and J. K. Solberg: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 195–98.CrossRefGoogle Scholar
  17. 17.
    X.-Y. Lü, E.-J. Guo, P. Rometsch, and L.-J. Wang: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 2645–51.CrossRefGoogle Scholar
  18. 18.
    J.D. Robson: Mater. Sci. Eng. A, 2002, vol. 338, pp. 219–29.CrossRefGoogle Scholar
  19. 19.
    P. X. Liu, Y. Liu, and R. Xu: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 2443–51.Google Scholar
  20. 20.
    E.R. Weibel and H. Elias: Quantitative Methods in Morphology, Springer-Verlag, Berlin, 1967.Google Scholar
  21. 21.
    A.R. Farkoosh, X. Grant Chen, and M. Pekguleryuz: Mater. Sci. Eng., A, 2015, vol. 620, pp. 181–89.CrossRefGoogle Scholar
  22. 22.
    L. Lodgaard and N. Ryum: Mater. Sci. Eng., A, 2000, vol. 283, pp. 144–52.CrossRefGoogle Scholar
  23. 23.
    J. Osten, B. Milkereit, C. Schick, and O. Kessler: Materials, 2015, vol. 8, pp. 2830–48.CrossRefGoogle Scholar
  24. 24.
    Y. Ohmori, L.C. Doan, and K. Nakai: Mater. Trans., 2002, vol. 43, pp. 246–55.CrossRefGoogle Scholar
  25. 25.
    A. Gaber, M.A. Gaffar, M.S. Mostafa, and A.F. Abo Zeid: Mater. Sci. Technol., 2006, vol. 22, pp. 1483–88.CrossRefGoogle Scholar
  26. 26.
    L.C. Doan, K. Nakai, Y. Matsuura, S. Kobayashi, et al.: Mater. Trans., 2002, vol. 43, pp. 1371–80.CrossRefGoogle Scholar
  27. 27.
    Y. Birol: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 1875–81.CrossRefGoogle Scholar
  28. 28.
    J.G. Kaufman: Properties of Aluminum Alloys: Tensile, Creep, and Fatigue Data at High and Low Temperatures; Aluminum Association, Washington, DC, 1999.Google Scholar
  29. 29.
    C. Booth-Morrison, D.C. Dunand, and D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 7029–42.CrossRefGoogle Scholar
  30. 30.
    K.E. Knipling, D.C. Dunand, and D.N. Seidman: Acta Mater., 2008, vol. 56, pp. 114–27.CrossRefGoogle Scholar
  31. 31.
    X.M. Chen, Y.C. Lin, M.S. Chen, H.B. Li, D.X. Wen, J.L. Zhang, et al.: Mater. Des., 2015, vol. 77, pp. 41–49.CrossRefGoogle Scholar
  32. 32.
    T. Wang, C. Wang, W. Sun, X. Qin, J. Guo, and L. Zhou: Mater. Des., 2014, vol. 62, pp. 225–32.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Applied ScienceUniversity of Quebec at ChicoutimiSaguenayCanada

Personalised recommendations