Advertisement

Metallurgical and Materials Transactions B

, Volume 49, Issue 4, pp 1547–1559 | Cite as

Orientation Dependence of Columnar Dendritic Growth with Sidebranching Behaviors in Directional Solidification: Insights from Phase-Field Simulations

  • Hui Xing
  • Xianglei Dong
  • Jianyuan Wang
  • Kexin Jin
Topical Collection: Metallurgical Processes Workshop for Young Scholars
Part of the following topical collections:
  1. International Metallurgical Processes Workshop for Young Scholars (IMPROWYS 2017)

Abstract

In this study, a thin-interface phase-field model was employed to study the orientation dependence of the columnar dendritic growth with sidebranching behaviors in directional solidification. It was found that the dimensionless tip undercooling increases with the increase of misorientation angle for three pulling velocities. The primary spacing is found to be a function of misorientation angle, and the dimensionless primary spacing with respect to the misorientation angle follows the orientation correction given by Gandin and Rappaz (Acta. Metall. 42:2233–2246, 1994). For the analysis of the dendritic tip, the two-dimensional (2-D) form of the nonaxisymmetric needle crystal was used to determine the radius of the tilted columnar dendrite. Based on the definitions of open side and constrained side of the dendrite, the analysis of the width active sidebranches and the dendritic area in 2-D with respect to the distance from the dendritic tip was carried out to investigate the asymmetrical dendrite envelop and sidebranching behaviors on the two sides in directional solidification. The obtained prefactor and exponent with respect to misorientation angle are discussed, showing that the sidebranching behaviors of a tilted columnar dendritic array obey a similar power-law relationship with that of a free dendritic growth.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51701160 and 51471134) and the Fund of the State Key Solidification Laboratory of Solidification Processing in Northwestern Polytechnical University (Grant No. SKLSP 201714).

References

  1. 1.
    J. Dantzig and M. Rappaz: Solidification, 1st ed., EPFL Press, Lausanne, 2009.CrossRefGoogle Scholar
  2. 2.
    D.K. Sun, M.F. Zhu, S.Y. Pan, and D. Raabe: Acta Mater., 2009, vol. 57, 1755–67.CrossRefGoogle Scholar
  3. 3.
    D.K. Sun, M.F. Zhu, S.Y. Pan, C.R. Yang, and D. Raabe: Compd. Math Appl., 2011, vol. 61 (12), pp. 3585–92.CrossRefGoogle Scholar
  4. 4.
    G.W. Wang, J.J. Liang, and Y.Z. Zhou: J. Mater. Sci. Technol., 2017, vol. 33, pp. 499–506.CrossRefGoogle Scholar
  5. 5.
    G.P. Ivantsov: Dokl. Akad. Nauk. SSSR, 1947, vol. 58, pp. 567–69.Google Scholar
  6. 6.
    A. Barbieri and J. Langer: Phys. Rev. A, 1989, vol. 39, pp. 5314–25.CrossRefGoogle Scholar
  7. 7.
    J. Langer: Science, 1989, vol. 243, pp. 1150–56.CrossRefGoogle Scholar
  8. 8.
    M. Ben-Amar and E. Brener: Phys. Rev. Lett., 1993, vol. 71, p. 589.CrossRefGoogle Scholar
  9. 9.
    J. Warren and J. Langer: Phys. Rev. A, 1990, vol. 42, p. 3518.CrossRefGoogle Scholar
  10. 10.
    W. Huang, X. Geng, and Y. Zhou: J. Cryst. Growth, 1993, vol. 134, pp. 105–15.CrossRefGoogle Scholar
  11. 11.
    A.G. Borisov, S.R. Fedorov, and V.V. Maslov: J. Cryst. Growth, 1991, vol. 112, 463–66.CrossRefGoogle Scholar
  12. 12.
    R. Trivedi, V. Seetharaman, and M. Eshelman: Metall. Trans. A, 1991, vol. 22A, pp. 585–93.CrossRefGoogle Scholar
  13. 13.
    S. Akamatsu and T. Ihle: Phys. Rev. E, 1997, vol. 56, pp. 4479–85.CrossRefGoogle Scholar
  14. 14.
    J. Deschamps, M. Georgelin, and A. Pocheau: Phys. Rev. E, 2008, vol. 78, p. 011605.CrossRefGoogle Scholar
  15. 15.
    J. Li, Z. Wang, Y. Wang, and J. Wang: Acta Mater., 2012, vol. 60, 1478–93.CrossRefGoogle Scholar
  16. 16.
    J. Ghmadh, J.-M. Debierre, J. Deschamps, et al.: Acta Mater., 2014, vol. 74, pp. 255–67.CrossRefGoogle Scholar
  17. 17.
    H. Xing, X.L. Dong, C.L. Chen, et al.: Int. J. Heat Mass Transfer, 2015, vol. 90, pp. 811–21.CrossRefGoogle Scholar
  18. 18.
    D. Tourret and A. Karma: Acta Mater., 2015, vol. 82, pp. 64–83.CrossRefGoogle Scholar
  19. 19.
    H. Xing, L.M. Zhang, K. Song, H.M. Chen, and K.K. Jin: Int. J. Heat Mass Transfer, 2017, vol. 104, pp. 607–14.CrossRefGoogle Scholar
  20. 20.
    R.N. Grugel and Y. Zhou: Metall. Trans. A, 1989, vol. 20A, pp. 969–73.CrossRefGoogle Scholar
  21. 21.
    C.-A. Gandin and M. Rappaz: Acta Metall., 1994, vol. 42, pp. 2233–46.CrossRefGoogle Scholar
  22. 22.
    C.-A. Gandin, M. Eshelman, and R. Trivedi: Metall. Mater. Trans. A, 1996, vol. 27A, 2727–39.CrossRefGoogle Scholar
  23. 23.
    J.S. Langer and H. Müller-Krumbhaar: Acta Metall., 1978, vol. 26, pp. 1681–87.CrossRefGoogle Scholar
  24. 24.
    E. Brener: Phys. Rev. Lett., 1993, vol. 71, p. 3653.CrossRefGoogle Scholar
  25. 25.
    E. Brener and D. Temkin: Phys. Rev. E, 1995, vol. 51, p. 351.CrossRefGoogle Scholar
  26. 26.
    Y. Couder, J. Maurer, R. González-Cinca, et al.: Phys. Rev. E, 2005, vol. 71, p. 031602.CrossRefGoogle Scholar
  27. 27.
    B. Echebarria, A. Karma, and S. Gurevich: Phys. Rev. E, 2010, vol. 81, pp. 275–82.CrossRefGoogle Scholar
  28. 28.
    A. Rai, M. Markl, and C. Körner: Comp. Mater. Sci., 2016, vol. 127, pp. 37–48.CrossRefGoogle Scholar
  29. 29.
    X. Zhang, J. Zhao, H. Jiang, et al.: Acta Mater., 2012, vol. 60, pp. 2249–57.CrossRefGoogle Scholar
  30. 30.
    I. Steinbach: JOM, 2013, vol. 65, 1096–1102.CrossRefGoogle Scholar
  31. 31.
    X.L. Dong, H. Xing, K.R. Weng, and H.L. Zhao: J. Iron Steel Res. Int., 2017, vol. 24, pp. 865–78.CrossRefGoogle Scholar
  32. 32.
    A. Karma: Phys. Rev. E, 1998, vol. 57, pp. 4323–49.CrossRefGoogle Scholar
  33. 33.
    A. Karma: Phys. Rev. Lett., 2001, vol. 87, pp. 115701.CrossRefGoogle Scholar
  34. 34.
    B. Echebarria, R. Folch, and A. Karma: Phys. Rev. E, 2004, vol. 70, p. 061604.CrossRefGoogle Scholar
  35. 35.
    L.Q. Chen: Ann. Rev. Mater. Res., 2002, vol. 32 (32), pp. 113–40.CrossRefGoogle Scholar
  36. 36.
    H. Xing, X.L. Dong, H.J. Wu, et al.: Sci. Rep., 2016, vol. 6, p. 26625.CrossRefGoogle Scholar
  37. 37.
    K. Ankit, H. Xing, M. Selzer, B. Nestler, and M.E. Glicksman: J. Cryst. Growth, 2017, 457, pp. 52–59.CrossRefGoogle Scholar
  38. 38.
    D. Tourret, Y. Song, A. Clarke, and A. Karma: Acta Mater., 2017, vol. 122, pp. 220–35.CrossRefGoogle Scholar
  39. 39.
    T. Takaki, M. Ohno, T. Shimokawabe, et al.: Acta Mater., 2014, vol. 81, pp. 272–83.CrossRefGoogle Scholar
  40. 40.
    Y. Shibuta, M. Ohno, and T. Takaki: JOM, 2015, vol. 67, pp. 1793–1804.CrossRefGoogle Scholar
  41. 41.
    C. Guo, J. Li, and H. Yu: Acta Mater., 2017, vol. 136, pp. 148–63.CrossRefGoogle Scholar
  42. 42.
    S. Liu, R.E. Napolitano, and R. Trivedi: Acta Mater., 2017, vol. 49, pp. 4271–76.CrossRefGoogle Scholar
  43. 43.
    L. Wang, N. Wang, and N. Provatas: Acta Mater., 2017, vol. 126, pp. 302–12.CrossRefGoogle Scholar
  44. 44.
    M. Ohno: Phys. Rev. E, 2012, vol. 86, p. 051603.CrossRefGoogle Scholar
  45. 45.
    M. Ohno and K. Matsuura: Acta Mater., 2010, vol. 58, pp. 5749–58.CrossRefGoogle Scholar
  46. 46.
    A. Karma and W.-J. Rappel: Phys. Rev. E, 1999, vol. 60, p. 3614.CrossRefGoogle Scholar
  47. 47.
    Y. Chen, B. Billia, D.Z. Li, et al.: Acta Mater., 2014, vol. 66, pp. 219–31.CrossRefGoogle Scholar
  48. 48.
    B. Utter, R. Ragnarsson, and E. Bodenschatz: Phys. Rev. Lett., 2001, vol. 86, pp. 4604–07.CrossRefGoogle Scholar
  49. 49.
    D. Walton and B. Chalmers: Trans. TMS-AIME, 1959, vol. 215, pp. 447–57.Google Scholar
  50. 50.
    Q. Li and C. Beckermann: Phys. Rev. E, 1998, vol. 57, pp. 3176–88.CrossRefGoogle Scholar
  51. 51.
    A.J. Melendez and C. Beckermann: J. Cryst. Growth, 2012, vol. 340, pp. 175–89.CrossRefGoogle Scholar
  52. 52.
    I. Steinbach, B. Kauerauf, Q. Li, et al.: Acta Mater., 1999, vol. 4, pp. 971–82.CrossRefGoogle Scholar
  53. 53.
    Y. Souhar, V. Felice, C. Beckermann, et al.: Comp. Mater. Sci., 2014, vol. 112, pp. 304–17.CrossRefGoogle Scholar
  54. 54.
    A. Viardin, M. Založnik, Y. Souhar, et al.: Acta Mater., 2017, vol. 122, pp. 386–99.CrossRefGoogle Scholar
  55. 55.
    M.E. Glicksman: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 391–404.CrossRefGoogle Scholar
  56. 56.
    M.E. Glicksman: Principles of Solidification, Springer, New York, NY, 2011, pp. 305–12.CrossRefGoogle Scholar
  57. 57.
    M.E. Glicksman, J.S. Lowengrub, S.W. Li, and X.R. Li: JOM, 2007, vol. 59, pp. 27–34.CrossRefGoogle Scholar
  58. 58.
    Z. Wang, J. Wang, and G. Yang: Phys. Rev. E, 2008, vol. 78, p. 042601.CrossRefGoogle Scholar
  59. 59.
    A. Dougherty and J.P. Gollub: Phys. Rev. A, 1998, vol. 38, pp. 3043–53.CrossRefGoogle Scholar
  60. 60.
    M.A. Chopra, M.E. Glicksman, and N.B. Singh: J. Cryst. Growth, 1988, vol. 92, pp. 543–46.CrossRefGoogle Scholar
  61. 61.
    U. Bisang and J.H. Bilgram: Phys. Rev. E, 1996, vol. 75, pp. 5309–26.CrossRefGoogle Scholar
  62. 62.
    D.P. Corrigan, M.B. Koss, J.C. Lacombe, et al.: Phys. Rev. E, 1999, vol. 60, p. 7217.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Hui Xing
    • 1
  • Xianglei Dong
    • 2
  • Jianyuan Wang
    • 1
  • Kexin Jin
    • 1
  1. 1.The Key Laboratory of Space Applied Physics and ChemistryNorthwestern Polytechnical UniversityXi’anP.R. China
  2. 2.College of Materials Science and EngineeringZhengzhou UniversityZhengzhouP.R. China

Personalised recommendations