Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates
- 48 Downloads
Abstract
Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were ~ 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the “linear spreading” stage, “spreading rate reduction” stage, and “wetting equilibrium” stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.
Notes
Acknowledgment
This study was performed with the financial support of Natural Science Fund of China for Excellent Young Scholars (No. 51522403).
References
- 1.P.R. Dawson, J. Ostwald, and K.M. Hayes, Trans. Inst. Min. Metall. C, 1985, vol. 94, pp. 71–8.Google Scholar
- 2.L-H. Hsieh and J.A. Whiteman, ISIJ Int., 1989, vol. 29, pp. 24–32.CrossRefGoogle Scholar
- 3.L-H. Hsieh and J.A. Whiteman, ISIJ Int., 1989, vol. 29, pp. 625–34.CrossRefGoogle Scholar
- 4.N.J. Bristow and A.G. Waters, Trans. Inst. Min. Metall. C, 1991, vol. 100, pp. 1–10.Google Scholar
- 5.I. Shigaki, M. Sawada, and N. Gennai, Trans. Iron Steel I. Japan,1986, vol. 26, pp. 503–11.CrossRefGoogle Scholar
- 6.C.E. Loo, K.T. Wan, and V.R. Howes, Ironmaking & Steelmaking,1988, vol. 15, pp. 279–85.Google Scholar
- 7.T.R.C. Patrick and R.R. Lovel, ISIJ Int., 2001, vol. 41, pp. 128–35.CrossRefGoogle Scholar
- 8.T. Mukherjee and J.A. Whiteman. Ironmaking & Steelmaking, 1985, vol. 12, pp. 151–5.Google Scholar
- 9.J. Ostwald, BHP Tech. Bull., 1981, vol. 25, pp. 13–20.Google Scholar
- 10.N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1344-57.CrossRefGoogle Scholar
- 11.J.D.G. Hamilton, B.F. Hoskins, W.G. Mumme, W.E. Borbidge, and M.A. Montague, Neues Jb. Miner. Abh., 1989, vol. 161, pp. 1–26.Google Scholar
- 12.M.I. Pownceby, J.M.F. Clout, and M.J. Fisher-White, Trans. Inst. Min. Metall. C, 1998, vol. 107, pp. 1–10.Google Scholar
- 13.M.I. Pownceby and T.R.C. Patrick, Eur. J. Miner, 2000, vol. 12, pp. 455–68.CrossRefGoogle Scholar
- 14.M.I. Pownceby and J.M.F. Clout, Trans. Inst. Min. Metall. C, 2000, vol. 109, pp. 36–48.Google Scholar
- 15.T.R.C. Patrick and M.I. Pownceby: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 79–89.CrossRefGoogle Scholar
- 16.X. Ding, X.M. Guo, C Y Ma. Metall. Mater. Trans. B, 2015, vol. 46, pp. 1146-53.CrossRefGoogle Scholar
- 17.X Ding, X M Guo. Metall. Mater. Trans. B. 2014, vol. 45, pp.1221-31.CrossRefGoogle Scholar
- 18.B Yu, X.W. Lv, S.L. Xiang, J.Q. Yin, X. Jian. Metall. Mater. Trans. B, 2016, vol. 47B, 2063-71.CrossRefGoogle Scholar
- 19.S. Kim, K. Lee, and Y. Chung. Metall. Mater. Trans. B. 2016, vol. 47B, pp. 1209-15.CrossRefGoogle Scholar
- 20.S.M. Seo, D.S. Kim and Y.H. Paik. Met. Mater. Int., vol. 7(5), 2001, pp. 479–83.CrossRefGoogle Scholar
- 21.H. Abdeyazdan, N. Dogan, M.A. Rhamdhani, M.W. Chapman, and B.J. Monaghan: Metall. Mater. Trans. B, 2014, published online.Google Scholar
- 22.B Yu, X.W. Lv, S.L. Xiang, C.G. Bai, J.Q. Yin, ISIJ Int. 2015, vol. 55, pp. 483-90.CrossRefGoogle Scholar
- 23.Choi and Lee, ISIJ Int., 2003, vol. 43, p. 1348.Google Scholar
- 24.B Yu, X.W. Lv, S.L. Xiang, C.G. Bai, J.Q. Yin, ISIJ Int. 2015, vol. 55, pp. 1558-64.CrossRefGoogle Scholar
- 25.K. Nakashima, N. Saito, S. Shinozaki, R. Tanaka, T. Maeda, M. Shimizu and K. Mori. ISIJ Int.,2004. vol. 44, pp.2052-59.CrossRefGoogle Scholar
- 26.A. V. Pocius, Adhesion and Adhesion Technology, Elsevier, New York, 2002, p. 30.Google Scholar
- 27.T. P. Yin, J. Phys. Chem.,1969, vol. 73, pp. 2413-26.CrossRefGoogle Scholar
- 28.S. Hara, Text for Okayama Ceramic Center Seminar, Okayama Ceramic Center, Okayama, 1994.Google Scholar
- 29.K. Morinaga, H. Takebe and Y. Kuromitsu, Ceramic Microstructures, Plenum Press, New York and London, 1998, pp. 543.Google Scholar
- 30.M. Hanao, T. Tanaka, M. Kawamoto and T. Kouji, ISIJ Int.,2007, vol.47, pp. 935-42.CrossRefGoogle Scholar
- 31.R. D. Shannon, Acta Crystallogr. A, 1976, vol. 32A, pp. 751.CrossRefGoogle Scholar
- 32.K. C. Mills and B. J. Keene: Int. Mater. Rev, 1987, 32, pp. 1.CrossRefGoogle Scholar
- 33.G. J. Janz and R. P. T. Tomkins, J. Phys. Chem. Ref. Data, 1983, 12, pp. 591.CrossRefGoogle Scholar
- 34.Warren J A, Boettinger W J, Acta Materialia, 1998, 46(9), pp. 3247-64.CrossRefGoogle Scholar
- 35.Yost F G, Otoole E J, Acta Meterialia, 1998, 46(14), pp. 5143-51.CrossRefGoogle Scholar