Leaching Studies for Copper and Solder Alloy Recovery from Shredded Particles of Waste Printed Circuit Boards

  • Maryam Kavousi
  • Anahita Sattari
  • Eskandar Keshavarz Alamdari
  • Davoud Haghshenas Fatmehsari
Article
  • 24 Downloads

Abstract

Printed circuit boards (PCBs) comprise various metals such as Cu, Sn, and Pb, as well as platinum group metals. The recovery of metals from PCBs is important not only due to the waste treatment but also for recycling of valuable metals. In the present work, the leaching process of Cu, Sn, and Pb from PCBs was studied using fluoroboric acid and hydrogen peroxide as the leaching agent and oxidant, respectively. Pertinent factors including concentration of acid, temperature, liquid-solid ratio, and concentration of oxidizing agent were evaluated. The results showed 99 pct of copper and 90 pct solder alloy were dissolved at a temperature of 298 K (25 °C) for 180 minutes using 0.6 M HBF4 for the particle size range of 0.15 to 0.4 mm. Moreover, solid/liquid ratio had insignificant effect on the recovery of metals. Kinetics analysis revealed that the chemical control regime governs the process with activation energy 41.25 and 38.9 kJ/mol for copper and lead leaching reactions, respectively.

Notes

Acknowledgment

The authors would like to thank Mr. Y. Nosratzad for his help in performing some of the experiments.

References

  1. 1.
    Zhan, L., Xu, Z., Environmental Science & Technology, 2008. Vol. 42, pp. 7676-7681.CrossRefGoogle Scholar
  2. 2.
    Kim, E. Y., Kim, M. S., Lee, J. C., Jeong, J., Pandey, B. D., Hydrometallurgy, 2011, Vol. 107, pp. 124-132.CrossRefGoogle Scholar
  3. 3.
    Andrews, D., Raychaudhuri, A., Frias, C. J Power Sources, 2000, Vol. 88, pp. 124-129.CrossRefGoogle Scholar
  4. 4.
    C.E.M. Meskers, C. Hagelüken, S. Salhofer, and M. Spitzbart: in Proceedings of EMC, 2009.Google Scholar
  5. 5.
    Khaliq, A., Rhamdhani, M.A., Brooks, G. and Masood, S., Resources, 2014, 3(1), pp. 152-79.CrossRefGoogle Scholar
  6. 6.
    Birloaga, I., Coman, V., Kopacek, B., Vegliò, F., Waste Manage, 2014, Vol. 34, pp. 2581-2586.CrossRefGoogle Scholar
  7. 7.
    Yazici, E. Y., & Deveci, H. Hydrometallurgy, 2013, Vol. 139, pp. 30-38.CrossRefGoogle Scholar
  8. 8.
    Cui, J., Zhang, L., J Hazard Mater, 2008. Vol. 158, pp. 228-256.CrossRefGoogle Scholar
  9. 9.
    Sheng, P. P., & Etsell, T. H. Waste Manage Res, 2007. Vol. 25, pp. 380-383.CrossRefGoogle Scholar
  10. 10.
    Kamberovic, Z. J., Association of Metallurgical Engineers of Serbia, 2009, Vol. 15, pp. 231-243.Google Scholar
  11. 11.
    Tuncuk, A., Stazi, V., Akcil, A., Yazici, E. Y., & Deveci, H. Minerals Engineering, 2012. Vol. 25, pp. 28-37.CrossRefGoogle Scholar
  12. 12.
    Yang, H., Liu, J., & Yang, J., Journal of Hazardous Materials, 2011. Vol. 187, pp. 393-400.CrossRefGoogle Scholar
  13. 13.
    Barakat, M. A., Hydrometallurgy. 1998., Vol. 49, pp. 63-73.CrossRefGoogle Scholar
  14. 14.
    Jha, M. K., Choubey, P. K., Jha, A. K., Kumari, A., Lee, J. C., Kumar, V., & Jeong, J., Waste Manage, 2012, Vol. 32, pp. 1919-1925.CrossRefGoogle Scholar
  15. 15.
    Svehla, G., Vogel’s Qualitative Inorganic Analysis, 7th ed., Pearson Education India, New Delhi, 2008.Google Scholar
  16. 16.
    N. Dhawan, M. Kumar, V. Kumar, and M. Wadhwa: in Proceedings of the Global Symposium on Recycling, Waste Treatment and Clean Technology (REWAS), Cancun, Mexico, 2008, pp. 12–15.Google Scholar
  17. 17.
    Jha, M. K., Kumari, A., Choubey, P. K., Lee, J. C., Kumar, V., & Jeong, J., Hydrometallurgy, 2012, Vol. 121, pp. 28-34.CrossRefGoogle Scholar
  18. 18.
    Masavetas, I., Moutsatsou, A., Nikolaou, E., Spanou, S., Zoikis-Karathanasis, A., Pavlatou, E. A., & Spyrellis, N. Global NEST Journal, 2009, Vol. 11, pp. 241-247.Google Scholar
  19. 19.
    Park, Y. J., Fray, D. J., Journal of Hazardous Materials, 2009, Vol. 164, pp. 1152-1158.CrossRefGoogle Scholar
  20. 20.
    Gibson, R. W., Fray, D. J., Sunderland, J. G., Dalrymple, I. M., Electrochem. Soc. Proc., 2003. Vol. 18, pp. 346-354.Google Scholar
  21. 21.
    A.C. Tan: Tin and Solder Plating in the Semiconductor Industry. Springer Science & Business Media, 1992.Google Scholar
  22. 22.
    J.-P. Croue, G.-V. Korshin, and M. Benjamin: Characterization of Natural Organic Matter in Drinking Water. AWWA Research Foundation and American Water Works Association, 1999.Google Scholar
  23. 23.
    Zhang, X., Guan, J., Guo, Y., Yan, X., Yuan, H., Xu, J., Guo, Z. ACS Sustainable Chemistry & Engineering, 2015. Vol. 3, pp. 1696-1700.CrossRefGoogle Scholar
  24. 24.
    Levenspiel, O., Industrial & Engineering Chemistry Research, 1999. Vol. 38, pp.4140-4143.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Maryam Kavousi
    • 1
  • Anahita Sattari
    • 1
  • Eskandar Keshavarz Alamdari
    • 1
  • Davoud Haghshenas Fatmehsari
    • 1
  1. 1.Department of Mining and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations