Advertisement

Study of Non-Newtonian Behavior of CaO-SiO2-Based Mold Slag and Its Effect on Lubrication in Continuous Casting of Steel

  • Xiaobo Yan
  • Meijuan Gan
  • Huazhi Yuan
  • Qiangqiang WangEmail author
  • Shengping HeEmail author
  • Qian Wang
Article
  • 35 Downloads

Abstract

To understand the effect of the non-Newtonian behavior of mold slag on lubrication during continuous casting of steel, the current study investigated the rheology of CaO-SiO2-based mold slag using a rotational viscometer with variable rotating speed. The constitutive equations at different temperatures were determined. Subsequently, the obtained viscosity as a function of temperature and shear rate was incorporated into a validated mathematical model. The main results demonstrated that slag viscosity decreased dramatically with increased shear rate as the experimental temperature approached the break temperature of mold slag, meaning that the mold slag had a property of shear thinning. The predicted evolution of slag viscosity during mold oscillation was consistent with the shear thinning as the shear rate exerted on the slag channel varied. The calculated slag consumption was higher than that for slag treated as a Newtonian fluid, which agreed well with measurements using a miniature continuous caster. This study finds that the consideration of the non-Newtonian behavior of mold slag is significant to understand the lubrication mechanism and optimize related parameters via simulation.

Notes

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation of China (Grant Nos. 51804057, U1660204, and 51874057) and the Fundamental Research Funds for the Central Universities in China (Grant No. 2018CDXYCL0018).

References

  1. 1.
    K. Watanabe, K. Tsutsumi, M. Suzuki, H. Fujita, S. Hatori, T. Suzuki, and T. Omoto: ISIJ Int., 2014, vol. 54, pp. 865-71.CrossRefGoogle Scholar
  2. 2.
    K. Wu, S.J. Chu, W. Qian, and Q. Niu: Steel Res., 1999, vol. 70, pp. 248-51.CrossRefGoogle Scholar
  3. 3.
    K. Sorimachi, S. Sakai, and T. Fujii: Tetsu-to-Hagane, 1995, vol. 81, pp. 1144-49.CrossRefGoogle Scholar
  4. 4.
    M. Valdez, G.S. Shannon, and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450-57.CrossRefGoogle Scholar
  5. 5.
    Y.L. Zhen, G.H. Zhang, and K.C. Chou: Metall. Mater. Trans. B, 2015, vol. 46, pp.155-61.CrossRefGoogle Scholar
  6. 6.
    H.R. Yue, Z.W. He, T. Jiang, P.N. Duan, and X.X. Xue: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2118-27.CrossRefGoogle Scholar
  7. 7.
    K.C. Mills and C.-Å. Däcker: The Casting Powders Book, Springer, Cham, 2017.Google Scholar
  8. 8.
    S.H. Shin, J.W. Cho, and S.H Kim: J. Am. Ceram. Soc., 2014, vol. 97, pp. 3263–69.CrossRefGoogle Scholar
  9. 9.
    K. Watanabe, K. Tsutsumi, M. Suzuki, M. Nakada, and T. Shiomi: ISIJ Int., 2009, vol. 49, pp. 1161-66.CrossRefGoogle Scholar
  10. 10.
    S.H. Shin, D.W. Yoon, J.W. Cho, and S.H Kim: J. Non-Cryst. Solids, 2015, vol. 425, pp. 83-90.Google Scholar
  11. 11.
    S.H. Shin, J.W. Cho, and S.H. Kim: J. Non-Cryst. Solids, 2015, vol. 423-424, pp. 45-49.CrossRefGoogle Scholar
  12. 12.
    R. Brückner and Y.Z. Yue: J. Non-Cryst. Solids, 1994, vol. 175, pp. 118-28.CrossRefGoogle Scholar
  13. 13.
    T. Matsushita, Y. Sasaki, M. Görnerup, and S. Seetharaman: ISIJ Int., 2006, vol. 46, pp. 1258-63.CrossRefGoogle Scholar
  14. 14.
    L.G. Zhu, Z.P. Yuan, Y. Xu, X.J. Wang, and X.Y. Wu: Steelmaking, 2017, vol. 33, pp. 25-30.Google Scholar
  15. 15.
    L.R. Rudnick: Lubricant Additives: Chemistry and Applications, CRC Press, Boca Raton, 2009.Google Scholar
  16. 16.
    M.M. Molla and L.S. Yao: J. Heat Transfer, 2009, vol. 131, pp. 011702-1-011702-6.Google Scholar
  17. 17.
    L. Geoffrey, N.F. Dunlop, and S. Frances: Soft Matter, 2010, vol. 6, pp. 2080-86.CrossRefGoogle Scholar
  18. 18.
    S.B. Pope: Turbulent Flows, Cambridge University Press, Cambridge, 2000.Google Scholar
  19. 19.
    T. Wu, S.P. He, L.L. Zhu, and Q. Wang: Mater. Trans., 2016, vol. 57, pp. 58-63.CrossRefGoogle Scholar
  20. 20.
    ANSYS FLUENT 14.0, ANSYS, Inc., Canonsburg, PA, 2011.Google Scholar
  21. 21.
    S.D. Zhang, Q.Q. Wang, S.P. He, and Q. Wang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2038-49.CrossRefGoogle Scholar
  22. 22.
    P.E. Ramirez-Lopez, P.D. Lee, and K.C. Mills: ISIJ Int., 2010, vol. 50, pp. 425-34.CrossRefGoogle Scholar
  23. 23.
    Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 707-25.CrossRefGoogle Scholar
  24. 24.
    A. Yamauchi, T. Emi, and S. Seetharaman: ISIJ Int., 2002, vol. 42, pp. 1084-93.CrossRefGoogle Scholar
  25. 25.
    Y. Meng: Ph.D., University of Illinois, 2004.Google Scholar
  26. 26.
    X.D. Wang, L.W. Kong, F.M. Du, Y. Liu, X.Y. Zang, and M. Yao: ISIJ Int., 2014, vol. 54, pp. 2806-12.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.College of Materials Science and Engineering, and Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and Advanced MaterialsChongqing UniversityChongqingChina

Personalised recommendations