Advertisement

Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography

Abstract

This paper presents qualitative and quantitative characterization of two-phase liquid metal flows agitated by the stirrer on rotating permanent magnets. The stirrer was designed to fulfill various eddy flows, which may have different rates of solid particle entrapment from the liquid surface and their homogenization. The flow was characterized by visualization of the tailored tracer particles by means of dynamic neutron radiography, an experimental method well suited for liquid metal flows due to low opacity of some metals for neutrons. The rather high temporal resolution of the image acquisition (32 Hz image acquisition rate) allows for the quantitative investigation of the flows up to 30 cm/s using neutron particle image velocimetry. In situ visualization of the two-phase liquid metal flow is also demonstrated.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    A. Umbrashko, E. Baake, B. Nacke, A. Jakovics: Met. Mater. Trans. B, 2006, vol. 37B, pp. 831-838.

  2. 2.

    M. Ščepanskis, A. Jakovičs, E. Baake, B. Nacke: Magnetohydrodynamics, 2012, vol. 48, pp. 677-686.

  3. 3.

    M. Kirpo, A. Jakovičs, E. Baake, B. Nacke: Magnetohydrodynamics, 2007, vol. 43, pp. 161-162.

  4. 4.

    S. Pavlovs, A. Jakoviċs, E. Baake, B. Nacke, M. Kirpo: Magnetohydrodynamics, 2011, vol. 47, no. 4, pp. 399-412.

  5. 5.

    C. Trakas, P. Tabeling, J. P. Chabrerie: Journal de Mécanique Théorique et Appliquée, 1984, vol. 3, pp. 345-370.

  6. 6.

    D. J. Moore, J. C. R. Hunt: Progress in Astronautics & Aeronautics, 1983, vol. 84, pp. 359-373.

  7. 7.

    Y. Takeda: Nucl. Techn., 1987, vol. 79, pp. 120-124.

  8. 8.

    T. Wondrak, S. Eckert, G. Gerbeth, F. Stefani, K. Timmel, A. J. Peyton, N. Terzija, W. Yin: Steel Research Int., 2014, vol. 85, pp. 1266–1273.

  9. 9.

    K. Timmel, N. Shevchenko, M. Röder, M. Anderhuber, P. Gardin, S. Eckert, and G. Gerbeth: Metall. Mater. Trans. B, 2015, vol. 46B, no. 2, pp. 700-710.

  10. 10.

    S. Taniguchi, J. K. Brimacombe: ISIJ Int., 1994, vol. 34, pp. 722-731.

  11. 11.

    M. Ščepanskis, A. Jakovičs, E. Baake, B. Nacke: Int. J. Multiphase Flow, 2014, vol. 64, pp. 19-27.

  12. 12.

    M. Iguchi, T. Chihara, N. Takanashi, Y. Ogawa, N. Tokumitsu, Z. Morita: ISIJ Int., 1995, vol. 35, pp. 1354-1361.

  13. 13.

    V. F. Chevrier, A. W. Cramb: Met. Mater. Trans. B, 2000, vol. 31B, pp. 537-540.

  14. 14.

    X. Dai, X. Yang, J. Campbell, J. Wood: Mater Sci. Eng. A, 2003, vol.354, pp. 315-325.

  15. 15.

    W. Mirihanage, W. Xu, J. Tamayo-Ariztondo, D. Eskin, M. Garcia-Fernandez, P. Srirangam, P. Lee: Materials Letters, 2016, vol. 164, pp. 484-487.

  16. 16.

    N. Takenaka, T. Fujii, A. Ono, K. Sonoda, S. Tazawa, T. Nakanii: Nondestructive Testing & Evaluation, 1994, vol. 11, no. 2-3, pp. 107-113.

  17. 17.

    Y. Saito, K. Mishima, Y. Tibita, T. Suzuki, M. Matsubayashi: Appl. Radiation & Isotopes, 2004, vol. 61, pp. 683-691.

  18. 18.

    Y. Saito, K. Mishima, Y. Tobita, T. Suzuki, M. Matsubayashi: Exp. Therm. Fluid Sci., 2005, vol. 29, no. 3, pp. 323-330.

  19. 19.

    M. Ščepanskis, M. Sarma, R. Nikoluškins, K. Thomsen, A. Jakovičs, P. Vontobel, T. Beinerts, A. Bojarevičs, E. Platacis: Magnetohydrodynamics, 2015, vol. 51, pp. 257-265.

  20. 20.

    M. Sarma, M. Ščepanskis, A. Jakovičs, K. Thomsen, R. Nikoluškins, P. Vontobel, T. Beinerts, A. Bojarevičs, E. Platacis: Physics Procedia, 2015, vol. 69, pp. 457-463.

  21. 21.

    E. H. Lehmann, P. Vontobel, L. Wiezel: Nondestr. Test. Eval., 2001, vol. 16, pp. 191-202.

  22. 22.

    A. P. Kaestner, B. Műnch, P. Trtik, L. Butler: Opt. Eng., 2011, vol. 50, no. 12, p. 123201.

  23. 23.

    A. Bojarevics, T. Beinerts: Magnetohydrodynamics, 2010, vol. 46, pp. 333-338.

  24. 24.

    T. Beinerts, I. Bucenieks, A. Bojarevičs, Y. Gelfgat: Magnetohydrodynamics, 2015, vol. 51, no. 4, pp. 757-770.

  25. 25.

    M. Ščepanskis, E. Yu. Koroteeva, V. Geža, A. Jakovičs: Magnetohydrodynamics, 2015, vol. 51, no. 1, pp. 37-44.

Download references

Acknowledgments

This work was supported by the European Social Fund (Project. No. 2013/0018/1DP/1.1.1.2.0/13/APIA/VIAA/061) and by the German Helmholtz Association in frame of the Helmholtz-Alliance LIMTECH. The experiment was performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland. The authors thank engineer Raimonds Nikoluškins (UL) for design and supervision during manufacturing of the setup, engineers Matīss Kalvāns (UL) and Thomas Steinberg (LUH) for support and operation of the setup during the experiment The authors are also thankful to Dr. Kalvis Kravalis (UL) for his effort in preparation of particles; Sten Anders and Dr. Tom Weier (both HZDR) for the invaluable help with particle tracking methods; Dr. Andris Bojarevičs and Dr. Ernests Platacis (both UL) for support and ideas in setup design and preparation.

Author information

Correspondence to Mihails Ščepanskis.

Additional information

Manuscript submitted August 25, 2016.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

The video file contains neutron radiography visualization of different types of the MHD flows described in Figure 3, variation in magnet rotation speed and examples of PIV and PTV post-processing (AVI 75406 kb)

The video file contains neutron radiography visualization of different types of the MHD flows described in Figure 3, variation in magnet rotation speed and examples of PIV and PTV post-processing (AVI 75406 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ščepanskis, M., Sarma, M., Vontobel, P. et al. Assessment of Electromagnetic Stirrer Agitated Liquid Metal Flows by Dynamic Neutron Radiography. Metall and Materi Trans B 48, 1045–1054 (2017). https://doi.org/10.1007/s11663-016-0902-8

Download citation

Keywords

  • Particle Image Velocimetry
  • Liquid Metal
  • Particle Tracking Velocimetry
  • Neutron Radiography
  • Neutron Image