Advertisement

Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II: Conventional Electromagnetic Levitation

  • 518 Accesses

  • 12 Citations

Abstract

By means of external coupling between electromagnetic (EM) problem in ANSYS and hydrodynamic problem in FLUENT, a numerical model for the liquid metal free surface flow in an alternate EM field has been developed and verified in the first part of the article. Volume of Fluid (VOF) algorithm has been used for tracking of free surface. In this work, improved performance of the model is presented. General validation of the VOF algorithm is performed by comparison of the calculated free oscillations of the liquid column to its analytical solution. The 3D/VOF calculation of coupled EM field and free surface flow with Large Eddy Simulation turbulence description for the first time is applied for modeling of conventional EM levitation. Calculation results are compared with 2D/VOF and 3D/VOF models that use less precise kε and kω SST turbulence formulations. Obtained time-averaged droplet shapes are used for single-phase flow calculations with different turbulence models and free-slip/no-slip velocity conditions at the fixed free surface for validation of the flow. Meanwhile, series of levitation melting experiments are performed for verification of the simulated droplet shapes. In conclusion, parameter impact on the fully developed flow and the levitated droplet shape is discussed.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 294

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Siemens & Halske A.G.: German patent 518499, 1931.

  2. 2.

    O. Muck: German patent 422004, 1923.

  3. 3.

    E. Okress, D. Wroughton, G. Comenetz, P. Brace, J. Kelly: J. Appl. Phys., 1952, vol. 23, pp. 545-552.

  4. 4.

    J. W. S. Rayleigh: Proc. Royal Soc. London, 1879, vol. 29, pp. 71-79.

  5. 5.

    I. Egry, G. Lohoefer, G. Jacobs: Phys. Rev. Lett., 1995, vol. 75(22), pp. 4043-4046.

  6. 6.

    A. Bratz, I. Egry: J. Fluid Mech., 1995, vol. 298, pp. 341-359.

  7. 7.

    D. L. Cummings, D. A. Blackburn: J. Fluid Mech., 1991, vol. 224, pp. 395-416.

  8. 8.

    R. F. Brooks, A. P. Day: Int. J. Thermophys., 1999, vol. 20(4), pp. 1041-1050.

  9. 9.

    H. Lamb: Hydrodynamics. Dover: New York, 1945.

  10. 10.

    L. M. Racz, I. Egry: Rev. Sci. Instrum., 1995, vol. 66(8), pp. 4254-4258.

  11. 11.

    T. Richardsen, G. Lohoefer: Int. J. Thermophys., 1999, vol. 20(4), pp. 1029-1039.

  12. 12.

    R. W. Hyers: Meas. Sci. Technol., 2005, vol. 16, pp. 394-401.

  13. 13.

    Y. Takeda: Nuclear Technology, 1987, vol. 79, pp. 120-124.

  14. 14.

    R. Ricou, C. Vives: International Journal of Heat and Mass Transfer, 1982, vol. 25, pp. 1579-1588.

  15. 15.

    M. Scepanskis, M. Sarma, R. Nikoluskins, K. Thomsen, A. Jakovics, P. Vontobel, T. Beinerts, A. Bojarevics, E. Platacis: Magnetohydrodynamics, 2015, vol. 51(2), pp. 257-266.

  16. 16.

    E.M. Schwartz: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995.

  17. 17.

    J-H. Zong, J. Szekely, E. Schwartz: IEEE Transactions on Magnetics, 1992, vol. 28(3), pp. 1833-1842.

  18. 18.

    V. Bojarevics, K. Pericleous: ISIJ Int., 2003, vol. 43(6), pp. 890-898.

  19. 19.

    K. Pericleous, V. Bojarevics, and A. Roy: Int. J. Microgravity. Sci. Appl., 2013, vol. 30(1), pp. 56–63.

  20. 20.

    C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang: Spectral Methods in Fluid Dynamics, Springer, Berlin, 1988, p. 567.

  21. 21.

    D.C. Wilcox: Turbulence Modelling for CFD, DCW Industries, La Canada, CA, 1998, p. 540.

  22. 22.

    V. Bojarevics, K. Pericleous, M. Cross: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 179-189.

  23. 23.

    S. Easter: Ph.D. Thesis, University of Greenwich, London, 2012.

  24. 24.

    B. Q. Li: Ann. N. Y. Acad. Sci., 2006, vol. 1077, pp. 1-32.

  25. 25.

    X. Ai: Ph.D. Thesis, Washington State University, Pullman, WA, 2004.

  26. 26.

    B. Q. Li: Int. J. Eng. Sci., 1993, vol. 31(2), pp. 201-220.

  27. 27.

    S. K. Lele: J. Comp. Phys., 1992, vol 103(1), pp. 16-42.

  28. 28.

    H. Le, P. Moin: Int. J. Numer. Meth. Fl., 1991, vol. 92(2), 369-379.

  29. 29.

    R. W. Hyers, G. Trapaga, B. Abedian: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 29-36.

  30. 30.

    S. R. Berry, R. W. Hyers, L. M. Racz, B. Abedian: Int. J. Thermophys., 2005, vol. 26(5), pp. 1565-1581.

  31. 31.

    Team TEMPUS: Proc. IX Eur. Symp. On Gravity-Dependent Phenomena in Phys. Sci. Lecture Notes in Physics 464, 1996, Springer, New York, pp. 233–52.

  32. 32.

    C. W. Hirt, B. D. Nichols: J. Comp. Phys., 1981, vol. 39, pp. 201-225.

  33. 33.

    P. Chapelle, A. Jardy, D. Ablitzer, Yu. M. Pomarin, G. M. Grigorenko: J. Mater. Sci., 2008, vol. 43, pp. 3001-3008.

  34. 34.

    V. Bojarevics, K. Pericleous: Magnetohydrodynamics, 2001, vol. 37(1/2), pp. 93-102.

  35. 35.

    S. Spitans, A. Jakovics, E. Baake, B. Nacke: Metall. Mater. Trans. B, 2013, vol. 44B(3), pp. 593-605.

  36. 36.

    E. Baake: Dr.-Ing. Thesis., Leibniz University, Dusseldorf, 1994.

  37. 37.

    M. Kirpo. Ph.D. Thesis, University of Latvia, Riga, 2008.

  38. 38.

    V. Bojarevics, A. Roy, K. Pericleous: Magnetohydrodynamics, 2010, vol. 46(4), pp. 317-329.

  39. 39.

    O. Pesteanu, E. Baake: ISIJ International, 2011, Vol. 51(5), pp. 707-721.

  40. 40.

    S. Spitans, E. Baake, B. Nacke, A. Jakovics: Magnetohydrodynamics, 2015, vol. 51(1), pp. 121-132.

  41. 41.

    C. Bullard, R. W. Hyers, B. Abedian: IEEE T. Magn., 2005, vol. 41(7), pp. 2230-2235.

  42. 42.

    J. Priede and G. Gerberth: J. Appl. Phys., 2006, vol. 100, p. 911.

  43. 43.

    V. Shatrov, J. Priede, G. Gerberth: Phys. Fluids, 2007, vol. 19, 078106.

  44. 44.

    S. Spitans, E. Baake, B. Nacke, A. Jakovics: Magnetohydrodynamics, 2015, vol. 51(3), pp. 567-578.

Download references

Acknowledgments

This work has been supported by the European Social Fund within the project “Support for Doctoral Studies at University of Latvia” No. 2009/0162/1DP/1.1.2.1.1/09/IPIA/VIAA/004. The authors wish to acknowledge the German Research Association for supporting this study under the Grant No. BA 3565/3-2. The authors would like to thank Dr. Valdis Bojarevics for kindly sharing his simulation data of Okress et al. experiment within personal communication.

Author information

Correspondence to Sergejs Spitans.

Additional information

Manuscript submitted April 5, 2015.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 4239 kb)

Supplementary material 2 (MP4 30282 kb)

Supplementary material 1 (MP4 4239 kb)

Supplementary material 2 (MP4 30282 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spitans, S., Baake, E., Nacke, B. et al. Numerical Modeling of Free Surface Dynamics of Melt in an Alternate Electromagnetic Field. Part II: Conventional Electromagnetic Levitation. Metall and Materi Trans B 47, 522–536 (2016). https://doi.org/10.1007/s11663-015-0515-7

Download citation

Keywords

  • Large Eddy Simulation
  • Lorentz Force
  • Shear Stress Transport
  • Droplet Shape
  • Large Eddy Simulation Model