Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Austenite Stability and Strain Hardening in C-Mn-Si Quenching and Partitioning Steels

  • 53 Accesses

Abstract

Quenching and partitioning (Q&P) processing of third-generation advanced high strength steels generates multiphase microstructures containing metastable retained austenite. Deformation-induced martensitic transformation of retained austenite improves strength and ductility by increasing instantaneous strain hardening rates. This paper explores the influence of martensitic transformation and strain hardening on tensile performance. Tensile tests were performed on steels with nominally similar compositions and microstructures (11.3 to 12.6 vol. pct retained austenite and 16.7 to 23.4 vol. pct ferrite) at 980 and 1180 MPa ultimate tensile strength levels. For each steel, tensile performance was generally consistent along different orientations in the sheet relative to the rolling direction, but a greater amount of austenite transformation occurred during uniform elongation along the rolling direction. Neither the amount of retained austenite prior to straining nor the total amount of retained austenite transformed during straining could be directly correlated to tensile performance. It is proposed that stability of retained austenite, rather than austenite volume fraction, greatly influences strain hardening rate, and thus controls strength and ductility. If true, this suggests that tailoring austenite stability is critical for optimizing the forming response and crash performance of quenched and partitioned grades.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    A. Abraham: in Great Designs in STEEL Seminar, 2015.

  2. 2.

    Corporate Average Fuel Economy, https://www.nhtsa.gov/laws-regulations/corporate-average-fuel-economy/. Accessed 29 May 2019

  3. 3.

    D.K. Matlock and J.G. Speer: in International Conference on Micrstructure and Texture in Steels and Other Materials, A. Haldar, S. Suwas, and D. Bhattacharjee, eds., Springer, Jamshedpur, 2008, pp. 185–205.

  4. 4.

    K. Sugimoto, M. Kobayashi, and S. Hashimoto: Metall. Mater. Trans. A, 1992, vol. 23, pp. 3085–91.

  5. 5.

    I. Tamura: Met. Sci., 2014, vol. 16, pp. 245–53.

  6. 6.

    H.K.D.H. Bhadeshia: ISIJ Int., 2002, vol. 42, pp. 1059–60.

  7. 7.

    H. Bhadeshia: Bull. Polish Acad. Sci. Tech. Sci., 2010, vol. 58, pp. 255–65.

  8. 8.

    G.B. Olson and C. Morris: J. Less-Common Met., 1972, vol. 28, pp. 107–18.

  9. 9.

    S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, vol. 13, pp. 619–26.

  10. 10.

    L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13, pp. 627–35.

  11. 11.

    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

  12. 12.

    D. V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 25–34.

  13. 13.

    J.G. Speer, D. V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219–37.

  14. 14.

    A.M. Streicher, J.G. Speer, D.K. Matlock, and B.C. De Cooman: International Conference on Advanced High-Strength Sheet Steels for Automotive Applications, Winter Park, Colorado, 2004, pp. 51–62

  15. 15.

    A.J. Clarke: Colorado School of Mines, 2006.

  16. 16.

    P.J. Gibbs: Colorado School of Mines, 2013.

  17. 17.

    A. Di Schino, C. Braccesi, F. Cianetti, P.E. Di Nunzio, S. Mengaroni, P.R. Calvillo, and J.M. Cabrera: Mater. Sci. Forum, 2016, vol. 879, pp. 430–35.

  18. 18.

    J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. De Cooman, and D. V. Edmonds: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3591–601.

  19. 19.

    G.E. Dieter: Mechanical Metallurgy, 3rd edn., McGraw-Hill, New York, NY, 1961.

  20. 20.

    M. Miles: ASM Handbook Formability Anal., 2006, vol. 14B, pp. 673–96.

  21. 21.

    S.T. Mileiko: J. Mater. Sci., 1969, vol. 4, pp. 974–7.

  22. 22.

    R. Rana, P.J. Gibbs, E. De Moor, J.G. Speer, and D.K. Matlock: Steel Res. Int., 2015, vol. 86, pp. 1139–50.

  23. 23.

    S. Kang, J.G. Speer, D. Krizan, D.K. Matlock, and E. De Moor: Mater. Des., 2016, vol. 97, pp. 138–46.

  24. 24.

    K.O. Findley, J. Hidalgo, R.M. Huizenga, and M.J. Santofimia: Mater. Des., 2017, vol. 117, pp. 248–56.

  25. 25.

    E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2586–95.

  26. 26.

    P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3691–702.

  27. 27.

    A. Andrade-Campos, F. Teixeira-Dias, U. Krupp, F. Barlat, E.F. Rauch, and J.J. Grácio: Strain, 2010, vol. 46, pp. 283–97.

  28. 28.

    M. Mukherjee, S.B. Singh, and O.N. Mohanty, Materials Science and Technology, 2007, vol. 23, no. 3, pp. 338-46.

  29. 29.

    J. Min, L.G. Hector, L. Zhang, J. Lin, J.E. Carsley, and L. Sun, Materials Science and Engineering A, 2016, vol. 673, pp. 423-29.

  30. 30.

    D. De Knijf, C. Fojer, L. A.I. Kestens, and R. Petrov, Materials Science and Engineering A, 2015, vol. 638, pp. 219-27.

  31. 31.

    A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D. V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor: Acta Mater., 2008, vol. 56, pp. 16–22.

  32. 32.

    D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, and E. De Moor: Acta Mater., 2014, vol. 90, pp. 417–30.

  33. 33.

    D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, and J.G. Speer: Microsc Microanal., 2015, vol. 21, pp. 2271–2.

  34. 34.

    C. Chiriac, R. Sohmshetty, J. Balzer, T. Mueller, and J.D. Ju, In: IOP Confernce Series: Materials Science and Engineering, 2018, vol. 418, pp. 1–9.

  35. 35.

    K. Sugimoto, N. Usui, M. Kobayashi, and S. Hashimoto, ISIJ International, 1992, vol. 32, no. 12, pp. 1311-18.

  36. 36.

    J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Materials Science and Engineering A, 2011, vol. 528, pp. 4516–21.

  37. 37.

    Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, and S. Takaki, ISIJ International, 2013, vol. 53, no. 7, pp. 1224-30.

  38. 38.

    X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, Scripta Materialia, 2013, vol. 68, pp. 321-24.

  39. 39.

    J. Chiang, J.D. Boyd, and A.K. Pilkey, Mater. Sci. Eng. A, 2015, vol. 638, pp. 132-42.

  40. 40.

    P.J. Gibbs, B.C. De Cooman, D.W. Brown, J.G. Schroth, M.J. Merwin, and D.K. Matlock, Materials Science and Engineering A, 2014, vol. 609, pp. 323-33.

  41. 41.

    J.H. Ryu, D.I. Kim, H.S. Kim, H.K.D.H. Bhadeshia, and D.W. Suh, Scripta Materialia, 2010, vol. 63, pp. 297-9.

  42. 42.

    H. Zhao, W. Li, S. Zhou, and X. Jin, Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3943-55.

  43. 43.

    X. Hu, K.S. Choi, X.Sun, Y. Ren, and Y. Wang, Metall. Mater. Trans. A, 2016, vol 47A, pp. 5733-49.

  44. 44.

    C.Y. Wang, Y. Chang, J. Yang, W.Q. Cao, H. Dong, and Y. De Wang: J. Iron Steel Res. Int., 2016, vol. 23, pp. 130–7.

  45. 45.

    E. De Moor, J.G. Speer, D.K. Matlock, and D.N. Hanlon: Mater. Sci. Technol., 2011, pp. 568–79.

  46. 46.

    Q. Zhou, L. Qian, J. Tan, J. Meng, and F. Zhang, Mater. Sci. Eng. A, 2013, vol. 578, pp. 370-6.

  47. 47.

    R. Blonde, E. Jimenez-Melero, L. Zhao, N. Schell, E. Bruck, S. van der Zwaag, and N.H. van Dijk, Mater. Sci. Eng. A, 2014, vol. 594, pp. 125-34.

  48. 48.

    J. Chen, M. Lv, S. Tang, Z. Liu, and G. Wang, Materials Characterization, 2015, vol. 106, pp. 108-11.

  49. 49.

    J. Zhang, H. Ding, and R.D.K. Misra, Mater. Sci. Eng. A, 2015, vol. 636, pp. 53-9.

  50. 50.

    H. Guo, A. Zhao, R. Ding, C. Zhi, and J. He, Materials Science and Technology, 2016, vol. 32, no. 15, pp. 1605-12.

  51. 51.

    X.D. Tan, Y.B. Xu, X.L. Yang, Z.P. Hu, F. Peng, X.W. Ju, and D. Wu, Materials Characterization, 2015, vol. 104, pp. 23-30.

  52. 52.

    X.D. Tan, H. He, W. Lu, L. Yang, B. Tang, J. Yan, Y. Xu, and D. Wu, Mater. Sci. Eng. A, 2020, vol. 771.

  53. 53.

    M. Mukherjee, O.N. Mohanty, S. Hashimoto. T. Hojo, and K. Sugimoto, ISIJ International, 2006, vol. 46(2), pp. 316–24.

  54. 54.

    A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, and R.J. Comstock, Metall. Mater. Trans. A., 2006, vol. 37A, pp. 1875-86.

  55. 55.

    G.A. Thomas, J.G. Speer, and D.K. Matlock, Metall. Mater. Trans. A, 2011, vol. 42A. pp. 3652-9.

  56. 56.

    L. Wang and W. Feng, in Advanced Steels: The Recent Scenario in Steel Science and Technology, eds. Y. Weng, H. Dong, and Y. Gan, 2011, pp. 255–58.

  57. 57.

    Y.J. Li, J. Kang, W.N. Zhang, D. Liu, X.H. Wang, G. Yuan, R.D.K. Misra, and G.D. Wang, Mater. Sci. Eng. A, 2018, vol. 710, pp. 181-91.

  58. 58.

    ASTM Int. E8/E8M-16a, https://doi.org/10.1520/e0008_e0008m-16a.

  59. 59.

    ASTM Int. E975-13, https://doi.org/10.1520/e0975-13.

  60. 60.

    International Tables for X-Ray Crystallography, Physical and Chemical Tables, vol. 3, 1962.

  61. 61.

    T. Gnäupel-Herold and A. Creuziger, Mater. Sci. Eng. A, 2011, vol. 528, pp. 3594–600.

  62. 62.

    M. Witte and C. Lesch, Mater. Charact., 2018, vol. 139, pp. 111–5.

  63. 63.

    A. Arlazarov, M. Ollat, J.P. Masse, and M. Bouzat, Mater. Sci. Eng. A, 2016, vol. 661, pp. 79–86.

  64. 64.

    A. Mostafapour, A. Ebrahimpour, and T. Saeid, International Journal of ISSI, 2016, vol. 13, no. 2, pp. 1-6.

  65. 65.

    E.J. Seo, L. Cho, Y. Estrin, and B.C. De Cooman, Acta Materialia, 2016, vol. 113, pp. 124-39.

  66. 66.

    A. Navarro-Lopez, J. Hidalgo, J. Sietsma, and M.J. Santofimia, Materials Characterization, 2017, vol. 128, pp. 248-56.

  67. 67.

    W. Song, T. Ingendahl, and W. Bleck: Acta Metall. Sin., 2014, vol. 27, pp. 546–55.

  68. 68.

    D.M. Field and D.C. Van Aken: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1152–66.

  69. 69.

    B.C. De Cooman, S.J. Lee, S. Shin, E.J. Seo, and J.G. Speer: Metall. Mater. Trans. A, 2017, vol. 48, pp. 39–45.

  70. 70.

    L. Xiao, Z. Fan, Z. Jinxiu, Z. Mingxing, K. Mokuang, and G. Zhenqi: Phys. Rev. B, 1995, vol. 52, pp. 9970–8.

  71. 71.

    G.K. Bansal, V. Rajinikanth, C. Ghosh, V.C. Srivastava, S. Kundu, and S. G. Chowdhury, Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3501-14.

  72. 72.

    G.A. Thomas, J.G. Speer, D.K. Matlock, G. Krauss, and R.E. Hackenberg, in International Conference on Martensitic Transformations, G.B. Olson, D.S. Lieberman, and A. Saxena, eds., 2008, pp. 595-600.

  73. 73.

    Z. Jiang, Z. Guan, and J. Lian, Mater. Sci. Eng. A, 1995, vol. 190, pp. 55-64.

  74. 74.

    Y. Bergstrom, Y. Granbom, and D. Sterkenburg, Journal of Metallurgy, 2010, pp. 1–16.

  75. 75.

    W. Weib, T. van den Boogaard, E. Till, E. Atzema, M. Grunbaum, and A. Haufe: Enhanced Formability Assessment of AHSS Sheets, Luxembourg, 2014.

  76. 76.

    J.N. Hall and J.R. Fekete: Steels for Auto Bodies: A General Overview, Elsevier Ltd, Amsterdam, 2016.

  77. 77.

    D. Kitting, A. Ofenheimer, A.H. van den Boogaard, and P. Dietmaier: Key Eng. Mater., 2013, vol. 554–557, pp. 1252–64.

  78. 78.

    E.H. Atzema: Formability of Auto Components, 2016.

  79. 79.

    J. Coryell, V. Savic, L. Hector, and S. Mishra: SAE Int., https://doi.org/10.4271/2013-01-0610, 2013.

  80. 80.

    C. Finfrock, C. Becker, T. Ballard, G. Thomas, K. Clarke, and A. Clarke, Contributed Papers from Materials Science & Technology, Portland, Oregon, 2019, pp. 1236-43.

Download references

Acknowledgments

The financial support of the Advanced Steel Processing and Products Research Center (ASPPRC) at the Colorado School of Mines, Golden, CO, USA, is gratefully acknowledged. CF and KD acknowledge support from the National Science Foundation division of Civil, Mechanical, and Manufacturing Innovation (NSF-CMMI) through Award No. 1752530. The authors would like to thank K.X. Steirer, who assisted with X-ray diffraction experiments.

Author information

Correspondence to Christopher B. Finfrock.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 3, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finfrock, C.B., Clarke, A.J., Thomas, G.A. et al. Austenite Stability and Strain Hardening in C-Mn-Si Quenching and Partitioning Steels. Metall and Mat Trans A (2020). https://doi.org/10.1007/s11661-020-05666-8

Download citation