Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Critical Properties and Magnetocaloric Effect in La0.7Ba0.3Mn0.8Ti0.2O3 Ceramic

  • 37 Accesses

Abstract

In this work, critical behavior, and magnetocaloric effect, as well as the relationship between these characteristics in polycrystalline sample La0.7Ba0.3Mn0.8Ti0.2O3 has been studied in detail. The positive value of the slope of Arrott plots exhibits that the magnetic phase transition of this sample is of a second order at Curie temperature of 96 K. The critical exponents β, γ, and δ have been determined using various ways including the modified Arrott plots, the Kouvel–Fisher plots, and the critical isotherm analysis. Interestingly, the experimental critical exponent values were β = 0.349 ± 0.002, γ = 1.350 ± 0.033, and δ = 4.868 ± 0.002, which are close to those deduced for the 3D-Heisenberg model below the Curie temperature and for the 3D-XY model above it. Additionally, the ferromagnetic interaction in La0.7Ba0.3Mn0.8Ti0.2O3 was found to be at the borderline of the long-range and short-range magnetic coupling, which was confirmed through the exchange distance decaying of \( J\left( r \right)\sim r^{ - 4.9} \). Moreover, the magnetocaloric characteristics of La0.7Ba0.3Mn0.8Ti0.2O3 were consistent with the analysis of critical behavior.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Roger H. Mitchell: Perovskites, Modern and Ancient, Almaz Press, Ontario, Canada, 2002.

  2. 2.

    M. H. Phan and S. C. Yu: J. Magn. Magn. Mater., 2007, vol. 308, pp. 325-40.

  3. 3.

    L. T. T. Ngan, P. H. Nam, N. V. Dang, L. H. Nguyen, P. T. Phong: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 3466-73.

  4. 4.

    C. Zener: Phys. Rev. Lett., 1951, vol. 82, pp 403-05.

  5. 5.

    M.B. Salamon and P. Lin: Phys. Rev. Lett., 2002, vol. 88, art. no. 197203.

  6. 6.

    E. Dagotto, T. Hotta, A. Moreo: Phys. Rep., 2001, vol. 344, pp. 1-153

  7. 7.

    P. Nisha, S. S. Pillai, M. R. Varma, K. G. Suresh: Solid State Sci., 2012, vol. 14, pp. 40-47.

  8. 8.

    T. L. Phan, P. Q. Thanh, N. H. Sinh, K. W. Lee, S. C. Yu: Curr. Appl. Phys., 2011, vol. 11, pp. 830-33.

  9. 9.

    K. Kubo and N. Ohata: J. Phys. Soc. Jpn., 1972, vol. 33, pp. 21-32.

  10. 10.

    Y. Motome and N. Furulawa: J. Phys. Soc. Jpn., 2000, vol. 69, pp. 3785-88.

  11. 11.

    Y. Motome and N. Furulawa: J. Phys. Soc. Jpn., 2001, vol. 70, pp. 1487-90.

  12. 12.

    S. Taran, B.K. Chaudhuri, S. Chatterjee, H.D. Yang, S. Neeleshwar, and Y.Y. Chen: J. Appl. Phys., 2005, vol. 98, art. no. 103903.

  13. 13.

    B. Padmanabhan, H.L. Bhat, S. Elizabeth, S. Rößler, U.K. Rößler, K. Dörr, and K.H. Müller: Phys. Rev. B, 2007, vol. 75, art. no. 024419.

  14. 14.

    T.L. Phan, Y.D. Zhang, P. Zhang, T.D. Thanh, and S.C. Yu: J. Appl. Phys., 2012, vol. 112, art. no. 093906.

  15. 15.

    M. Ziese: J. Phys.: Condens. Matter., 2001, vol. 13, pp. 2919-34.

  16. 16.

    P. T. Phong, L. T. T. Ngan, L. V. Bau, N. M. An, L. T. H. Phong, N. V. Dang, I. J. Lee: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 385-94.

  17. 17.

    L. Chen, J. H. He, Y. Mei, Y. Z. Cao, W. W. Xia, H. F. Xu, Z. W. Zhu, Z. A. Xu: Physica B, 2009, vol. 404, pp. 1879-82.

  18. 18.

    D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, and J.F. Mitchell: Phys. Rev. Lett., 2009, vol. 89, art. no. 227202.

  19. 19.

    H. S. Shin, J. E. Lee, Y. S. Nam, H. L. Ju, C. W. Park: Solid State Commun., 2001, vol. 118, pp. 377-80.

  20. 20.

    A. Dhahri, M. Jemmali, M. Hussein, E. Dhahri, A. Koumina, E. K. Hlil: J. Alloys Comp., 2015, vol. 618, pp. 788-94.

  21. 21.

    C.E. Ancona-Torres, N. Pryds, L.T. Kuhn, C.R.H. Bahl, and S. Linderoth: J. Appl. Phys., 2010, vol. 108, art. no. 073914.

  22. 22.

    F. Ben Jemaa, S.H. Mahmood, M. Ellouze, E.K. Hlil, and F. Halouani: Ceram. Int., 2015, vol. 41, pp. 8191–8202.

  23. 23.

    V. Punith Kumar, V. Dayal, R. L. Hadimani, R. N. Bhowmik, D. C. Jiles: J. Mater. Sci., 2015, vol. 50, pp. 3562-75.

  24. 24.

    T. A. Ho, M. H. Phan, N. X. Phuc, V. D. Lam, T. L. Phan, S. C. Yu: J. Electron. Mater., 2016, vol. 45, pp. 2508-15.

  25. 25.

    L. V. Bau, N. X. Phuc, T. L. Phan, S. C. Yu, P. Nordblad: J. Appl. Phys., 2006, vol. 99, pp. 08Q306

  26. 26.

    A. Gasmi, M. Boudard, S. Zemni, F. Hippert, and M. Oumezzine: J. Phys. D: Appl. Phys., 2009, vol. 42, art. no. 225408.

  27. 27.

    H. M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65-71.

  28. 28.

    P. T. Phong, L. V. Bau, L. C. Hoan, D. H. Manh, N. X. Phuc, I. J. Lee: J Alloys Comp., 2016, vol. 656, pp. 920-28.

  29. 29.

    D. Kumar and A. K. Singh: J. Magn. Magn. Mater., 2019, vol. 469, pp. 264-73.

  30. 30.

    A. Arrott: Phys. Rev., 1957, vol. 108, pp. 1394-96.

  31. 31.

    B. K. Banerjee: Phys. Lett., 1964, vol. 12, pp. 16-17.

  32. 32.

    H. Eugene Stanley: Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York, 1971.

  33. 33.

    A. Arrott and J. E. Noakes: Phys. Rev. Lett., 1967, vol. 19, 786-89.

  34. 34.

    P. T. Phong, L. T. T. Ngan, L. V. Bau, N. X. Phuc, P. H. Nam, L. T. H. Phong, N. V. Dang, I. J. Lee: J. Magn. Magn. Mater., 2019, vol. 475, pp. 374-81.

  35. 35.

    M.H. Phan, G.T. Woods, A. Chaturvedi, S. Stefanoski, G.S. Nolas, and H. Srikanth: Appl. Phys. Lett., 2008, vol. 93, art. no. 252505.

  36. 36.

    J. S. Kouvel, M. E. Fisher: Phys. Rev., 1964, vol. 136, pp. A1626-A1632.

  37. 37.

    B. Widom: J. Chem. Phys., 1964, vol. 41, pp. 1633-34.

  38. 38.

    V. Franco, J. S. Blázquez, A. Conde: Appl. Phys. Lett., 2006, vol. 89, pp. 222512.

  39. 39.

    M. E. Fisher, S. K. Ma, B. G. Nickel: Phys Rev Lett., 1972, vol. 29, pp. 917-20.

  40. 40.

    S.F. Fischer, S.N. Kaul, and H. Kronmuller: Phys. Rev. B, 2002, vol. 65, art. no. 064443.

  41. 41.

    W.J. Jiang, X.Z. Zhou, G. Williams, Y. Mukovskii, and K. Glazyrin: Phys. Rev. B, 2008, vol. 77, art. no. 064424.

  42. 42.

    X. Zhu, Y. Sun, X. Luo et al.: J. Magn. Magn. Mater., 2010, vol. 322, pp. 242-46.

  43. 43.

    S. N. Kaul: J. Magn. Magn. Mater., 1985, vol. 53, pp. 5-53.

  44. 44.

    D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, and J.F. Mitchell: Phys. Rev. Lett., 2002, vol. 89, art. no. 227202.

Download references

Acknowledgments

This work was supported by the National Foundation for Science and Technology under Grant No. 103.02-2017.57.

Author information

Correspondence to P. T. Phong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 6, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bau, L.V., Morán, O., Tho, P.T. et al. Critical Properties and Magnetocaloric Effect in La0.7Ba0.3Mn0.8Ti0.2O3 Ceramic. Metall and Mat Trans A (2020). https://doi.org/10.1007/s11661-020-05662-y

Download citation