Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The β1 Triad-Related Configurations in a Mg-RE Alloy

  • 38 Accesses

Abstract

As the building block of a honeycomb precipitate network, the triadic arrangement of β1 strengthening precipitates is technologically important for the potential development of highly tuneable nanostructure in rare-earth (RE) containing Mg alloys. In this work, we provide systematic experimental observations of those impinged β1 variants in a Mg-Nd alloy, which are directly related to the characteristic triadic configuration. It is found that the isolated α-Mg crystal in a β1 triad has a 10.5 deg rotation when it has a perfect equilateral-triangular shape. This rotation angle decreases to ~ 9.4 deg when the isolated α-Mg crystal exhibits a non-equilateral shape. In this case, one or two of its lateral interfaces include a step with a height of 0.56 nm to reduce the lattice mismatch. Furthermore, the pre-stage prior to the formation of β1 triadic configuration is revealed for the first time. It originates from the implement of two β1 variants with the same sense of shear. The presence of such two variants, in the absence of the third variant, leads to a rotation of the α-Mg crystal in the small area close to the approaching ends of these two variants. A low-angle symmetrical tilt boundary around the [0001]α rotation axis is formed between the rotated and unrotated α-Mg crystals. Most of the tilt boundaries observed in this work have a tilt angle of ~ 4.7 deg. The atomic structure of such a tilt boundary is constructed using a crystallographic model and validated by molecular dynamics simulation. The unique distribution of Nd-rich solute clusters along the tilt boundary is qualitatively discussed based on crystallographic analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    T.M. Pollock: Science, 2010, vol. 328, pp. 986-7.

  2. 2.

    A.A. Luo: Inter. Mater. Rev., 2004, vol. 49, pp. 13-30.

  3. 3.

    M. Bamberger and G. Dhem: Ann. Rev. Mater. Res., 2008, vol. 38, pp. 505-33.

  4. 4.

    A. Kelly and R.B. Nicholson: Prog. Mater. Sci., 1963, vol. 10, pp. 151-391.

  5. 5.

    J.F. Nie: Scr. Mater., 2003, vol. 48, pp. 1009-15.

  6. 6.

    J.F. Nie: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3891-3939.

  7. 7.

    Y.M. Zhu, A. J. Morton and J.F. Nie: Scr. Mater., 2008, vol. 58, pp. 525-8.

  8. 8.

    P. Vostry, B. Solma, I. Stulikova, F. Buch and B.L. Mordike: Phys. Status. Solidi. A, 1999, vol. 175, pp. 491-500.

  9. 9.

    I.A. Anyanwu, S. Kamado and Y. Kojima: Mater. Trans., 2001, vol. 42, pp. 1206-11.

  10. 10.

    P.J. Apps, H. Karimzadeh, J.F. King and G.W. Lorimer: Scr. Mater., 2003, vol. 48, pp. 1023-8.

  11. 11.

    T. Honma, T. Ohkubo, K. Hono and S. Kamado: Mater. Sci. Eng. A, 2005, vol. 395, pp. 301-6.

  12. 12.

    J.F. Nie, X. Gao and S.M. Zhu: Scr. Mater., 2005, vol. 53, pp. 1049-53.

  13. 13.

    M. Nishijima and K. Hiraga: Mater. Trans., 2007, vol. 48, pp. 10-5.

  14. 14.

    M. Nishijima, K. Yubuta and K. Hiraga: Mater. Trans., 2007, vol. 48, pp. 84-7.

  15. 15.

    X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, W.J. Ding and J.F. Nie: Mater. Sci. Eng. A, 2006, vol. 431, pp. 322-7.

  16. 16.

    K. Hono, C.L. Mendis, T.T. Sasaki and K. Oh-ishi: Scr. Mater., 2010, vol. 63, pp.710-5.

  17. 17.

    K. Saito, A. Yasuhara, M. Nishijima and K. Hiraga: Mater. Trans., 2011, vol. 52, pp. 1009-15.

  18. 18.

    K. Saito and K. Hiraga: Mater. Trans., 2011, vol. 52, pp. 1860-7.

  19. 19.

    A. Sanaty-Zadeh, A. A. Luo and D. S. Stone: Acta Mater., 2015, vol. 94, pp. 294-306.

  20. 20.

    X.Y. Xia, W.H. Sun, A.A. Luo and D.S. Stone: Acta Mater., 2016, vol. 111, pp. 335-47.

  21. 21.

    D. Choudhuri, S.G. Srinivasan, M.A. Gibson, Y.F. Zheng, D.L. Jaeger, H.L. Fraser and R. Banerjee: Nat. Commun., 2017, vol. 8, 2000.

  22. 22.

    Y. Zhang, Y.M. Zhu, W. Rong, Y. Wu, L.M. Peng, J.F. Nie and N. Birbilis: Metall. Mater. Trans. A, 2018, vol. 49, pp. 673-94.

  23. 23.

    M.A. Easton, M.A. Gibson, D. Qiu, S.M. Zhu, J. Gröbner, R. Schmid-Fetzer, J.F. Nie and M.-X. Zhang: Acta Mater., 2012, vol. 60, pp. 4420-30.

  24. 24.

    Y.Z. Ji, A. Issa, T.W. Heo, J.E. Saal, C. Wolverton and L.Q. Chen: Acta Mater., 2014, vol. 76, pp. 259-71.

  25. 25.

    A. Issa, J.E. Saal and C. Wolverton: Acta Mater., 2014, vol. 65, pp. 240-50.

  26. 26.

    P. Hidalgo-Manrique, J.D. Robson and M.T. Pérez-Prado: Acta Mater., 2017, vol. 124, pp. 456-467.

  27. 27.

    R. Wilson, C.J. Bettles, B.C. Muddle and J.F. Nie: Mater. Sci. Forum, 2003, vol. 419-422, pp. 267-72.

  28. 28.

    W. Lefebvre, V. Kopp and C. Pareige: Appl. Phys. Lett., 2012, vol. 100, 141906.

  29. 29.

    Y.M. Zhu, H. Liu, Z. Xu, Y. Wang and J.F. Nie: Acta Mater., 2015, vol. 83, pp. 239-47.

  30. 30.

    J.P. Hadorn and S.R. Agnew: Mater. Sci. Eng. A, 2012, vol. 533, pp. 9-16.

  31. 31.

    H. Liu, Y. Gao, Y.M. Zhu, Y. Wang and J.F. Nie: Acta Mater., 2014, vol. 77, pp. 133-50.

  32. 32.

    J.Z. Peng, Y.F. Wang and M.F. Gray: Physica B, 2008, vol. 403, pp. 2344-8.

  33. 33.

    Z. Xu, M. Weyland and J. F. Nie: Acta Mater., 2014, vol. 81, pp. 58-70.

  34. 34.

    A. Issa, J.E. Saal and C. Wolverton: Acta Mater., 2015, vol. 83, pp. 75–83.

  35. 35.

    M. Paliwai, S.K. Das, J. Kim and I. Jung: Scr. Mater., 2015, vol. 108, pp. 11-4.

  36. 36.

    Y.M. Zhu, K. Ohishi, N.C. Wilson, K. Hono, A.J. Morton and J.F. Nie: Metall. Mater. Trans. A, 2016, vol. 47, pp. 927-40.

  37. 37.

    J.F. Nie, N.C. Wilson, Y.M. Zhu and Z. Xu: Acta Mater., 2016, vol. 106, pp. 260-71.

  38. 38.

    A.R. Natarajan, E.L.S. Solomon, B. Puchala, E.A. Marquis and A.Van der Ven: Acta Mater., 2016, vol. 108, pp. 367-79.

  39. 39.

    H. Liu, Y.M. Zhu, N.C. Wilson and J.F. Nie: Acta Mater., 2017, vol. 133, pp. 408-26.

  40. 40.

    A.R. Natarajan and A. Van der Ven: Acta Mater., 2017, vol. 124, pp. 620-32.

  41. 41.

    S. DeWitt, E.L.S. Solomon, A.R. Natarajan, V. Araullo-Peters, S. Rudraraju, L.K. Aagesen, B. Puchala, E.A. Marquis, A. van der Ven, K. Thornton and J.E. Allison: Acta Mater., 2017, vol. 136, pp. 378-89.

  42. 42.

    J.F. Nie and B.C. Muddle: Acta Mater., 2000, vol. 48, pp. 1691-1703.

  43. 43.

    H. Liu, Y. Gao, Z. Xu, Y.M. Zhu, Y. Wang and J.F. Nie: Sci. Rep., 2015, vol. 5, 16530.

  44. 44.

    Z. Xu, M. Weyland and J.F. Nie: Acta Mater., 2014, vol. 75, pp. 122-33.

  45. 45.

    Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y.M. Zhu, J.F. Nie and Y. Wang: Acta Mater., 2012, vol. 60, pp. 4819-32.

  46. 46.

    S. Plimpton: J. Comput. Phys., 1995, vol. 117, pp. 1-19.

  47. 47.

    M.A. Tschopp and D.L. McDowell: Philos. Mag., 2007, vol. 87, pp. 3147-73.

  48. 48.

    D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma and D.J. Srolovitz: Phys. Rev. B, 2006, vol. 73, 024116.

  49. 49.

    J.F. Nie: Acta Mater., 2008, vol. 56, pp. 3169-76.

  50. 50.

    W.-Z. Zhang and G.C. Weatherly: Prog. Mater. Sci., 2005, vol. 50, pp. 181-292.

  51. 51.

    M.X. Zhang and P.M. Kelly: Prog. Mater. Sci., 2009, vol. 54, pp. 1101-70.

  52. 52.

    J.P. Hirth and R.C. Pond: Acta Mater., 1996, vol. 44, pp. 4749-63.

  53. 53.

    W. Bollmann: Crystal Defects and Crystalline Interfaces, Springer, Berlin, 1970.

  54. 54.

    R.W. Balluffi, A. Brokman and A.H. King: Acta Metall., 1982, vol. 30, pp. 1453-70.

  55. 55.

    W.-Z. Zhang and G.R. Purdy: Phil. Mag. A, 1993, vol. 68, pp. 279-90.

  56. 56.

    W.-Z. Zhang and G.R. Purdy: Phil. Mag. A, 1993, vol. 68, pp. 291-303.

  57. 57.

    N. Cherkashin, O. Kononchuk, S. Reboh and M. Hÿtch: Acta Mater., 2012, vol. 60, pp. 1161-73.

  58. 58.

    F.C. Frank: Report of the Symposium on the Plastic Deformation of Crystalline Solids, Carnegie Institute of Technology, Pittsburgh PA, 1950.

  59. 59.

    J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed., Wiley, New York, 1982.

  60. 60.

    J. Wang and I.J. Beyerlein: Model. Simul. Mater. Sci. Eng., 2012, vol. 20, 024002.

  61. 61.

    H.A. Khater, A. Serra, R.C. Pond and J.P. Hirth: Acta Mater., 2012, vol. 60, pp. 2007-20.

  62. 62.

    Y.M. Zhu, M.Z. Bian and J.F. Nie: Acta Mater., 2017, vol. 127, pp. 505-18.

Download references

Acknowledgments

The authors wish to acknowledge gratefully financial supports by the Australian Research Council and Baosteel-Australia Joint Research and Development Centre, and the access to the facilities of the Monash Centre for Electron Microscopy.

Author information

Correspondence to J. F. Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 8, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y.M., Zhang, H., Xu, S.W. et al. The β1 Triad-Related Configurations in a Mg-RE Alloy. Metall and Mat Trans A (2020). https://doi.org/10.1007/s11661-020-05651-1

Download citation