Advertisement

Mn3O4 and (ZnFe)OOH Composites for Supercapacitors with High Active Mass

  • R. Poon
  • W. Liang
  • I. ZhitomirskyEmail author
Article
  • 2 Downloads

Abstract

A new colloidal method has been developed for the fabrication of Mn3O4-carbon nanotube (CNT) composites for positive electrodes of supercapacitors and areal capacitance of 5.04 F cm−2 has been achieved. In this method, chemical precipitation of Mn3O4 was performed in the presence of carbon nanotubes, dispersed using a tolonium chloride dye. An electrostatic heterocoagulation mechanism has been developed, which allowed for enhanced mixing of Mn3O4 and CNT, and resulted in enhanced electrochemical performance at high active mass of 36 mg cm−2. Testing results revealed changes in microstructure and oxidation state of Mn during cycling, which allowed for enhanced capacitance. In order to utilize the high capacitance of the positive Mn3O4-CNT electrodes in supercapacitor devices, advanced negative electrodes have been developed. (ZnFe)OOH-polypyrrole coated CNT electrodes with enhanced areal capacitance in a negative potential window have been fabricated. Asymmetric devices showed promising performance in a voltage window of 1.6 V.

Notes

Acknowledgment

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada for the financial support.

Supplementary material

11661_2019_5561_MOESM1_ESM.pdf (304 kb)
Supplementary material 1 (PDF 303 kb)

References

  1. 1.
    W. Wei, X. Cui, W. Chen and D.G. Ivey, Chemical society reviews 2011, vol. 40, pp. 1697-1721.CrossRefGoogle Scholar
  2. 2.
    S. Zhang and G.Z. Chen, Energy Materials 2008, vol. 3, pp. 186-200.CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, X. Liu, S. Wang, L. Li and S. Dou, Advanced Energy Materials 2017, vol. 7, 1602543CrossRefGoogle Scholar
  4. 4.
    S. Yang, Y. Zhang, S. Wang, J. Shi, X. Liu and L. Li, Journal of Materials Chemistry A 2019, doi: 10.1039/C1039TA04516C.CrossRefGoogle Scholar
  5. 5.
    R. Dong, Q. Ye, L. Kuang, X. Lu, Y. Zhang, X. Zhang, G. Tan, Y. Wen and F. Wang, ACS Applied Materials & Interfaces 2013, vol. 5, pp. 9508-9516.CrossRefGoogle Scholar
  6. 6.
    D. Dubal, D. Dhawale, R. Salunkhe, S. Pawar, V. Fulari and C. Lokhande, Journal of Alloys and Compounds 2009, vol. 484, pp. 218-221.CrossRefGoogle Scholar
  7. 7.
    Y.-F. Lee, K.-H. Chang, C.-C. Hu and Y.-H. Chu, Journal of Power Sources 2012, vol. 206, pp. 469-475.CrossRefGoogle Scholar
  8. 8.
    Z. Qi, A. Younis, D. Chu and S. Li, Nano-micro letters 2016, vol. 8, pp. 165-173.CrossRefGoogle Scholar
  9. 9.
    D.P. Shaik, P. Rosaiah, K.S. Ganesh, Y. Qiu and O. Hussain, Materials Science in Semiconductor Processing 2018, vol. 84, pp. 83-90.CrossRefGoogle Scholar
  10. 10.
    A.A. Yadav, Thin Solid Films 2016, vol. 608, pp. 88-96.CrossRefGoogle Scholar
  11. 11.
    J. Cao, Y. Wang, Y. Zhou, D. Jia, J.-H. Ouyang and L. Guo, Journal of Electroanalytical Chemistry 2012, vol. 682, pp. 23-28.CrossRefGoogle Scholar
  12. 12.
    S. Li, L.-L. Yu, R.-B. Li, J. Fan and J.-T. Zhao, Energy Storage Materials 2018, vol. 11, pp. 176-183.CrossRefGoogle Scholar
  13. 13.
    Y. Qiao, Q. Sun, J. Xi, H. Cui, Y. Tang and X. Wang, Journal of alloys and compounds 2016, vol. 660, pp. 416-422.CrossRefGoogle Scholar
  14. 14.
    Y. Qiao, Q. Sun, O. Sha, X. Zhang, Y. Tang, T. Shen, L. Kong and W. Gao, Materials Letters 2018, vol. 210, pp. 128-132.CrossRefGoogle Scholar
  15. 15.
    D. Yan, Y. Li, Y. Liu, R. Zhuo, Z. Wu, B. Geng, J. Wang, P. Ren, P. Yan and Z. Geng, Materials Letters 2014, vol. 117, pp. 62-65.CrossRefGoogle Scholar
  16. 16.
    Z. Gao, H. Wang, Z. Cao, T. Zhou, C. An and Y. Zhao, Energy Technology 2017, vol. 5, pp. 2275-2282.CrossRefGoogle Scholar
  17. 17.
    L. Liu, L. Su, J. Lang, B. Hu, S. Xu and X. Yan, Journal of Materials Chemistry A 2017, vol. 5, pp. 5523-5531.CrossRefGoogle Scholar
  18. 18.
    K. Subramani, D. Jeyakumar and M. Sathish, Physical Chemistry Chemical Physics 2014, vol. 16, pp. 4952-4961.CrossRefGoogle Scholar
  19. 19.
    X. Xiao, Y. Wang, G. Chen, L. Wang and Y. Wang, Journal of Alloys and Compounds 2017, vol. 703, pp. 163-173.CrossRefGoogle Scholar
  20. 20.
    J. Yao, S. Yao, F. Gao, L. Duan, M. Niu and J. Liu, Journal of Colloid and Interface Science 2018, vol. 511, pp. 434-439.CrossRefGoogle Scholar
  21. 21.
    J. Xu, X. Fan, Q. Xia, Z. Shao, B. Pei, Z. Yang, Z. Chen and W. Zhang, Journal of Alloys and Compounds 2016, vol. 685, pp. 949-956.CrossRefGoogle Scholar
  22. 22.
    M.S. Ata, J. Milne and I. Zhitomirsky, Journal of Colloid and Interface Science 2018, vol. 512, pp. 758-766.CrossRefGoogle Scholar
  23. 23.
    J. Milne and I. Zhitomirsky, Journal of Colloid and Interface Science 2018, vol. 515, pp. 50-57.CrossRefGoogle Scholar
  24. 24.
    Y. Zhou, L. Guo, W. Shi, X. Zou, B. Xiang and S. Xing, Materials 2018, vol. 11, 881.CrossRefGoogle Scholar
  25. 25.
    Y. Xiao, Y. Cao, Y. Gong, A. Zhang, J. Zhao, S. Fang, D. Jia and F. Li, Journal of Power Sources 2014, vol. 246, pp. 926-933.CrossRefGoogle Scholar
  26. 26.
    C. Liu, H. Song, C. Zhang, Y. Liu, C. Zhang, X. Nan and G. Cao, Nano Research 2015, vol. 8, pp. 3372-3383.CrossRefGoogle Scholar
  27. 27.
    N.S. Arul, J.I. Han and P.C. Chen, ChemElectroChem 2018, vol. 5, pp. 2747-2757.CrossRefGoogle Scholar
  28. 28.
    S. Krehula, S. Musić, Ž. Skoko and S. Popović, Journal of Alloys and Compounds 2006, vol. 420, pp. 260-268.CrossRefGoogle Scholar
  29. 29.
    Y. Zhu, K. Shi and I. Zhitomirsky, Journal of Materials Chemistry A 2014, vol. 2, pp. 14666-14673.CrossRefGoogle Scholar
  30. 30.
    C. Shi and I. Zhitomirsky, Nanoscale Research Letters 2010, vol. 5, 518.CrossRefGoogle Scholar
  31. 31.
    Y. Su and I. Zhitomirsky, Journal of Power Sources 2014, vol. 267, pp. 235-242.CrossRefGoogle Scholar
  32. 32.
    M. Kosmulski, Advances in Colloid and Interface Science 2016, vol. 238, pp. 1-61.CrossRefGoogle Scholar
  33. 33.
    B.E. Conway and W.G. Pell, Journal of Power Sources 2002, vol. 105, pp. 169-181.CrossRefGoogle Scholar
  34. 34.
    W.G. Pell and B.E. Conway, Journal of Electroanalytical Chemistry 2001, vol. 500, pp. 121-133.CrossRefGoogle Scholar
  35. 35.
    B.E. Conway, Journal of the Electrochemical Society 1991, vol. 138, pp. 1539-1548.CrossRefGoogle Scholar
  36. 36.
    L. Li, K.H. Seng, H. Liu, I.P. Nevirkovets and Z. Guo, Electrochimica Acta 2013, vol. 87, pp. 801-808.CrossRefGoogle Scholar
  37. 37.
    M. Chigane and M. Ishikawa, Journal of the electrochemical society 2000, vol. 147, pp. 2246-2251.CrossRefGoogle Scholar
  38. 38.
    V. Di Castro and G. Polzonetti, Journal of Electron Spectroscopy and Related Phenomena 1989, vol. 48, pp. 117-123.CrossRefGoogle Scholar
  39. 39.
    J. Moon, M. Awano, H. Takagi and Y. Fujishiro, Journal of Materials Research 1999, vol. 14, pp. 4594-4601.CrossRefGoogle Scholar
  40. 40.
    S. Devaraj and N. Munichandraiah, Electrochemical and Solid-State Letters 2005, vol. 8, pp. A373-A377.CrossRefGoogle Scholar
  41. 41.
    Y. Su and I. Zhitomirsky, Advanced Engineering Materials 2014, vol. 16, pp. 760-766.CrossRefGoogle Scholar
  42. 42.
    Y. Wu, S. Liu, H. Wang, X. Wang, X. Zhang and G. Jin, Electrochimica Acta 2013, vol. 90, pp. 210-218.CrossRefGoogle Scholar
  43. 43.
    R. Attias, D. Sharon, A. Borenstein, D. Malka, O. Hana, S. Luski and D. Aurbach, Journal of The Electrochemical Society 2017, vol. 164, pp. A2231-A2237.CrossRefGoogle Scholar
  44. 44.
    Z. Zhang, K. Chi, F. Xiao and S. Wang, Journal of Materials Chemistry A 2015, vol. 3, pp. 12828-12835.CrossRefGoogle Scholar
  45. 45.
    M.R.C. Ismael and J.M.R. Carvalho, Minerals Engineering 2003, vol. 16, pp. 31-39.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations