Microstructural Investigation of the Impact Weld Interface of Pseudo Single Grained Cu and Ag
Communication
First Online:
- 45 Downloads
Abstract
The microstructure of the impact weld interface of pseudo single grained copper and silver is investigated. Electron backscattered diffraction shows severe plastic deformation at the weld interface and suggests that the cooling rate of the interface is fast enough to avoid conventional eutectic lamellar structure in localized melted zones. Scanning transmission electron microscopy, along with nano-diffraction and compositional analysis, demonstrates that impact welding can achieve metallurgical bonding in the solid-state without forming an amorphous structure.
Notes
The authors gratefully acknowledge the financial support from the National Science Foundation (Grant Numbers CMMI-1538736 and CMMI-1531785).
References
- 1.T. Blazynski: Explosive Welding, Forming and Compaction, England, 1983.CrossRefGoogle Scholar
- 2.T. Lee, S. Zhang, A. Vivek, B. Kinsey, and G. Daehn: J. Manuf. Sci. Eng., 2018, vol. 140, pp. 121002.CrossRefGoogle Scholar
- 3.A. Nassiri, A. Vivek, T. Abke, B. Liu, T. Lee, and G. Daehn: Appl. Phys. Lett., 2017, vol. 110, pp. 231601.CrossRefGoogle Scholar
- 4.I. Bataev, D. Lazurenko, S. Tanaka, K. Hokamoto, A. Bataev, Y. Guo, and A. Jorge: Acta Mater., 2017, vol. 135, pp. 277-289.CrossRefGoogle Scholar
- 5.Z. Fan, H. Yu, and C. Li: Scr. Mater., 2016, vol. 110, pp. 14-18.CrossRefGoogle Scholar
- 6.Z. Zhang, K. Wang, J. Li, Q. Yu, and W. Cai: Sci. Rep., 2017, vol. 7, pp. 12505.CrossRefGoogle Scholar
- 7.J. Li, Q. Yu, Z. Zhang, W. Xu, X. Sun, J. Li, Q. Yu, Z. Zhang, W. Xu, and X. Sun: Appl. Phys. Lett., 2016, vol. 108, pp. 201606.CrossRefGoogle Scholar
- 8.M. Nishida, A. Chiba, Y. Honda, J. Hirazum, and K. Horikiri: ISIJ Int., 1995, vol. 35, pp. 217-219.CrossRefGoogle Scholar
- 9.B. Liu, A. Vivek, M. Presley, and G. Daehn: Metall. Mater. Trans. A, 2018, vol. 49, pp. 899-907.CrossRefGoogle Scholar
- 10.M. Presley: Ph.D. Dissertation, The Ohio State University, Columbus, OH, 2016.Google Scholar
- 11.V. Gupta, T. Lee, A. Vivek, K. Choi, Y. Mao, X. Sun, and G. Daehn: J. Mater. Process. Tech., 2019, vol. 264, pp. 107-118.CrossRefGoogle Scholar
- 12.A. Nassiri, S. Zhang, T. Lee, T. Abke, A. Vivek, B. Kinsey, and G. Daehn: J. Manuf. Process., 2017, vol. 28, pp. 558-564.CrossRefGoogle Scholar
- 13.A. Vivek, S. Hansen, B. Liu, and G. Daehn: J. Mater. Process. Technol., 2013, vol. 213, pp. 2304-2311.CrossRefGoogle Scholar
- 14.J. Johnson, G. Taber, A. Vivek, Y. Zhang, S. Golowin, K. Banik, G. Fenton, and G. Daehn: Steel Res. Int., 2009, vol. 80, pp. 359-365.Google Scholar
- 15.M. Miyagi, Y. Kawahito, H. Wang, H. Kawakami, T. Shoubu, and M. Tsukamoto: Opt. Express, 2018, vol. 26, pp. 55-63.CrossRefGoogle Scholar
- 16.P. Boswell and G. Chadwick: J. Mater. Sci., 1977, vol. 12, pp. 1879-1894.CrossRefGoogle Scholar
- 17.A. Vivek, B. Liu, S. Hansen, and G. Daehn: J. Mater. Process. Technol., 2014, vol. 214, pp. 1583-1589.CrossRefGoogle Scholar
Copyright information
© The Minerals, Metals & Materials Society and ASM International 2019