Advertisement

Low-Temperature Nitridation of 2205 Duplex Stainless Steel

  • J. C. DaltonEmail author
  • F. Ernst
  • A. H. Heuer
Article
  • 31 Downloads

Abstract

Low-temperature gas-phase nitridation has been studied in \(\updelta \)-ferrite in 2205 duplex stainless steel. High-resolution spatially-resolved compositional and structural analysis revealed two competitive responses to nitridation. Some regions revealed a nitrogen atom fraction approaching 25 at. pct—greater than \(10^6\) times the equilibrium solubility limit at room temperature. Remarkably, there is no expansion or distortion of the body-centered cubic lattice. This is similar to the response of \(\updelta \)-ferrite in this alloy to low-temperature carburization. In conventional transmission electron microscopy bright-field images, the supersaturated ferrite grains show no diffraction contrast—resembling the appearance of amorphous structures—suggesting an unusually high defect density. These grains exhibit spinodal decomposition of the ferrite to nanometer-scale Fe-rich and Cr-rich ferrite domains. High-resolution imaging reveals pristine Fe-rich nanocrystals, whereas the Cr-rich domains are apparently amorphous. Elsewhere in the nitrogen-rich case, an isothermal ferrite-to-austenite phase transformation occurred. The austenite transformation product formed martensitically with a high-aspect-ratio plate-like morphology in the Nishiyama–Wassermann orientation relationship to the ferrite matrix.

Notes

Acknowledgments

We thank the NSF for financial support under Grant Nos. DMR-1104937 and DMR-0922938, and the Center for Electron Microscopy and Analysis (CEMAS) of the Ohio State University for access to their aberration-corrected scanning transmission electron microscopes. We are also grateful to Dr. Robert E. A. Williams and Prof. David W. McComb for their assistance and helpful comments.

References

  1. 1.
    H. Dong: Int. Mater. Rev. 2010, vol. 55, pp. 65–98.CrossRefGoogle Scholar
  2. 2.
    T. Bell: Key Eng. Mater. 2008, vol. 373–374, pp. 289–295.CrossRefGoogle Scholar
  3. 3.
    J. Buhagiar: Surf. Eng. 2010, vol. 26, pp. 229–232.CrossRefGoogle Scholar
  4. 4.
    M.A.J. Somers and T.L. Christiansen: in ASM Handbook, vol. 4D, J.L. Dossett and G.E. Totten eds., ASM International, Cleveland, 2014, pp. 439–50.Google Scholar
  5. 5.
    S.R. Collins, P.C. Williams, S.V. Marx, A.H. Heuer, F. Ernst, and H. Kahn: in ASM Handbook, J.L. Dossett and G.E. Totten eds., ASM International, Cleveland, 2014, pp. 451–60.Google Scholar
  6. 6.
    A. H. Heuer, H. Kahn, F. Ernst, G. M. Michal, D. B. Hovis, R. J. Rayne, F. J. Martin, P. M. Natishan: Acta Mater. 2012, vol. 60 (2), pp. 716–725.CrossRefGoogle Scholar
  7. 7.
    A. H. Heuer, H. Kahn, P. M. Natishan, F. J. Martin, L. E. Cross: Electrochim. Acta 2011, vol. 58, pp. 157–160.CrossRefGoogle Scholar
  8. 8.
    D. Wu: Ph.D. thesis, Case Western Reserve University, Cleveland, OH, 2013.Google Scholar
  9. 9.
    G. M. Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal, A. H. Heuer: Acta Mater. 2006, vol. 54 (6), pp. 1597–1606.CrossRefGoogle Scholar
  10. 10.
    G. M. Michal, F. Ernst, A. H. Heuer: Metall. Mater. Trans. A 2006, vol. 37 (6), pp. 1819–1824.CrossRefGoogle Scholar
  11. 11.
    D. Wang, C. W. Chen, J. C. Dalton, F. Yang, R. Sharghi-Moshtaghin, H. Kahn, F. Ernst, R. E. A. Williams, D. W. McComb, A. H. Heuer: Acta Mater. 2015, vol. 86, pp. 193–207.CrossRefGoogle Scholar
  12. 12.
    W. R. de Oliveira, B. C. Kurelo, D. G. Ditzel, F. C. Serbena, C. E. Foerster, G. B. de Souza: Appl. Surf. Sci. 2018, vol. 434, pp. 1161–1174.CrossRefGoogle Scholar
  13. 13.
    L. Paijan, M. Berhan, M. Adenan, N. Yusof, and E. Haruman: in Advanced Materials Research, vol. 576, Trans Tech Publications, Zurich, 2012, pp. 260–63.Google Scholar
  14. 14.
    A. M. Gatey, S. S. Hosmani, S. B. Arya, C. A. Figueroa, R. P. Singh: Surf. Eng. 2016, vol. 32 (1), pp. 61–68.CrossRefGoogle Scholar
  15. 15.
    J. Yan, T. Gu, S. Qiu, J. Wang, J. Xiong, H. Fan: Metall. Mater. Trans. B 2015, vol. 46 (3), pp. 1461–1470.CrossRefGoogle Scholar
  16. 16.
    J. Yan, J. Wang, Y. Lin, T. Gu, D. Zeng, R. Huang, X. Ji, H. Fan: J. Mater. Eng. Perform. 2014, vol. 23 (4), pp. 1157–1164.CrossRefGoogle Scholar
  17. 17.
    R. Huang, J. Wang, S. Zhong, M. Li, J. Xiong, H. Fan: App. Surf. Sci. 2013, vol. 271, pp. 93–97.CrossRefGoogle Scholar
  18. 18.
    J. Bielawski, J. Baranowska: Surf. Eng. 2010, vol. 26, pp. 299–304.CrossRefGoogle Scholar
  19. 19.
    C. Blawert, B. L. Mordike, Y. Jirásková, O. Schneeweiss: Surf. Coat. Technol. 1999, vol. 116-119, pp. 189–198.CrossRefGoogle Scholar
  20. 20.
    C. Blawert, A. Weisheit, B. L. Mordike, F. M. Knoop: Surf. Coat. Technol. 1996, vol. 85, pp. 15–27.CrossRefGoogle Scholar
  21. 21.
    B. Larisch, U. Brusky, H. J. Spies: Surf. Coat. Technol. 1999, vol. 116-119, pp. 205–211.CrossRefGoogle Scholar
  22. 22.
    H. J. Spies, C. Eckstein, H. Biermann, A. Franke: Materialwiss. Werkstofftech. 2010, vol. 41, pp. 133–141.CrossRefGoogle Scholar
  23. 23.
    A. M. Kliauga, P. Schwaab, M. Pohl: Z. Werkstoffe 1999, vol. 54, pp. 65–71.Google Scholar
  24. 24.
    A. M. Kliauga, M. Pohl: Surf. Coat. Technol. 1998, vol. 98, pp. 1205–1210.CrossRefGoogle Scholar
  25. 25.
    A.M. Kliauga: Ph.D. thesis, Ruhr-Universität Bochum, Fakultät für Maschinenbau, Bochum, Germany, 1997.Google Scholar
  26. 26.
    T. L. Christiansen, M. A. J. Somers: Surf. Eng. 2005, vol. 21, pp. 445–455.CrossRefGoogle Scholar
  27. 27.
    M. Pohl, A.M. Kliauga, and W. Reick: in Surface Engineering, Taylor & Francis, New Yok, 1993, pp. 193–98.Google Scholar
  28. 28.
    C. E. Pinedo, A. P. Tschiptschin: Rem: Rev. Esc. Minas 2013, vol. 66 (2), pp. 209–214.Google Scholar
  29. 29.
    R. H. van der Jagt: Heat Treat. Met. 2000, vol. 3, pp. 62–65.Google Scholar
  30. 30.
    G. M. Michal, X. Gu, W. D. Jennings, H. Kahn, F. Ernst, A. H. Heuer: Metall. Mater. Trans. A 2009, vol. 40A, pp. 1781–1790.CrossRefGoogle Scholar
  31. 31.
    H. Kahn, A. H. Heuer, G. M. Michal, F. Ernst, R. Sharghi-Moshtaghin, Y. Ge, P. M. Natishan, R. J. Rayne, F. J. Martin: Surf. Eng. 2012, vol. 28 (3), pp. 213–219.CrossRefGoogle Scholar
  32. 32.
    D. Wang, H. Kahn, F. Ernst, A. Heuer: Acta Mater. 2017, vol. 124, pp. 237–246.CrossRefGoogle Scholar
  33. 33.
    A. Zangiabadi, J. C. Dalton, D. Wang, F. Ernst, A. H. Heuer: Metall. Mater. Trans. A 2017, vol. 48 (1), pp. 8–13.CrossRefGoogle Scholar
  34. 34.
    J. C. Dalton: Ph.D. thesis, Case Western Reserve University, Cleveland, OH, 2017.Google Scholar
  35. 35.
    R. R. Keller, R. H. Geiss: J. Microsc. 2012, vol. 245 (3), pp. 245–251.CrossRefGoogle Scholar
  36. 36.
    P. W. Trimby: Ultramicroscopy 2012, vol. 120, pp. 16–24.CrossRefGoogle Scholar
  37. 37.
    T. De Nys, P. M. Gielen: Metall. Trans. 1971, vol. 2 (5), pp. 1423–1428.Google Scholar
  38. 38.
    D. Wang: Ph.D. thesis, Case Western Reserve University, Cleveland, OH 2014.Google Scholar
  39. 39.
    R. Amini, E. Salahinejad, E. A. Bajestani, M. Hadianfard: J. Alloys Compd. 509(7), pp. 3252–3256 2011.CrossRefGoogle Scholar
  40. 40.
    M. Enayati, M. Bafandeh: J. Alloys Compd. 454(1-2), pp. 228–232 (2008).CrossRefGoogle Scholar
  41. 41.
    J. Loureiro, B. Costa, G. Le Caër, and P. Delcroix: in ICAME 2007, Springer, Berlin, 2008, pp. 281–87.CrossRefGoogle Scholar
  42. 42.
    M. Mendez, H. Mancha, G. Mendoza, J. Escalante, M. Cisneros, H. Lopez: Metall. Mater. Trans. A 2002, vol. 33 (10), pp. 3273–3278.CrossRefGoogle Scholar
  43. 43.
    H. Miura, K. Omuro, H. Ogawa: Mater. Trans., JIM 1995, vol. 36 (2), pp. 263–268.CrossRefGoogle Scholar
  44. 44.
    H. Miura, K. Omuro, H. Ogawa: ISIJ Int. 1996, vol. 36 (7), pp. 951–957.CrossRefGoogle Scholar
  45. 45.
    Y. Ogino, K. Namba, T. Yamasaki: ISIJ Int. 1993, vol. 33 (3), pp. 420–425.CrossRefGoogle Scholar
  46. 46.
    E. Salahinejad, R. Amini, M. Marasi, T. Sritharan, M. Hadianfard: Mater. Chem. Phys. 2009, vol. 118 (1), pp. 71–75.CrossRefGoogle Scholar
  47. 47.
    E. Salahinejad, R. Amini, M. Ghaffari, M. Hadianfard: J. Alloys Compd., 505(2), pp. 584–587 2010.CrossRefGoogle Scholar
  48. 48.
    A. Zangiabadi: Ph.D. thesis, Case Western Reserve University, Cleveland, OH 2017.Google Scholar
  49. 49.
    Z. Nishiyama: Sci. Rep. Tohoku Univ. 1934, vol. 23, pp. 637.Google Scholar
  50. 50.
    G. Wassermann: Ueber den Mechanismus der \(\alpha \)\(\gamma \)–Umwandlung des Eisens, Verlag Stahleisen, 1935.Google Scholar
  51. 51.
    P. D. Southwick, R. Honeycombe: Met. Sci. 1980, vol. 14, pp. 253–261.CrossRefGoogle Scholar
  52. 52.
    Y. S. Li, S. X. Li, T. Y. Zhang: J. Nucl. Mater. 2009, vol. 395 (1), pp. 120–130.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations