Advertisement

In Situ Observation and Phase-Field Modeling of Peritectic Solidification of Low-Carbon Steel

  • Sen LuoEmail author
  • Guangguang Liu
  • Peng Wang
  • Xiaohua Wang
  • Weiling Wang
  • Miaoyong Zhu
Article
  • 37 Downloads

Abstract

In the present study, both in situ experiment and multiphase field modeling are adopted to investigate the peritectic solidification of a low-carbon steel. The results show that the peritectic reaction occurs at the temperature of 3.4 K lower than the equilibrium peritectic temperature, the γ-austenite first nucleates at the δ/L boundary, and then rapidly propagates along the δ/L boundary by the advance of the L/γ/δ triple point till the δ-ferrite is encircled by the γ austenite. The whole peritectic reaction process is very fast, and the measured and predicted average propagation velocity of L/γ/δ triple point along the δ/L boundary are, respectively, 1.36 and 1.09 mm/s. This small difference between the measurement and prediction means that the developed multiphase field model is capable of predicting the peritectic reaction and peritectic transformation during the peritectic solidification process of Fe-C alloy, and the peritectic reaction can be regarded as a solute diffusion-controlled process. With the increase of cooling rate and undercooling, the advancing velocities of L/γ/δ triple point, L/γ interface and γ/δ interface increase, and thus the γ-austenite between the liquid phase and δ phase becomes longer and thicker for the same elapsed time.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of National Key Research and Development Plan (Nos. 2017YFB0304100, 2016YFB0300105), National Natural Science of China (Nos. 51674072, 51704151, 51804067) and Fundamental Research Funds for the Central Universities (Nos. N182504014, N170708020, N172503013).

References

  1. 1.
    Xia G, Bernhard C, IIie S, Fuerst C (2011) Steel Res Int 82:230-236CrossRefGoogle Scholar
  2. 2.
    2. K. Matsuura, Y. Itoh and T.Narita: ISIJ Int., 1993, vol. 33, pp. 583-587.CrossRefGoogle Scholar
  3. 3.
    3. P. Presoly, R. Pierer and C. Bernhard: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5377-5388.CrossRefGoogle Scholar
  4. 4.
    4. R. Sarkar, A. Sengupta, V. Kumar and S. K. Choudary: ISIJ Int., 2015, vol. 55, pp. 781-790.CrossRefGoogle Scholar
  5. 5.
    5. H. W. Kerr, J. Cisse and G. F. Bolling: Acta Mater., 1974, vol. 22, pp. 677-686.CrossRefGoogle Scholar
  6. 6.
    6. H. Fredriksson and J. Stjerndahl: Metal Sci., 1982, vol. 16, pp. 575-585.CrossRefGoogle Scholar
  7. 7.
    7. H. W. Kerr and W. Kurz: Int. Mater. Rev., 1996, vol. 41, pp. 129-164.CrossRefGoogle Scholar
  8. 8.
    8. D. M. Stefanescu: ISIJ Int., 2006, vol. 46, pp. 786-794.CrossRefGoogle Scholar
  9. 9.
    9. N. M. Xiao, Y. Chen, D. Z. Li and Y. Y. Li: Sci. China Technol. Sci., 2012, vol. 55, pp. 341-356.CrossRefGoogle Scholar
  10. 10.
    10. H. Fredriksson and T. Nylén: Metal Sci., 1982, vol. 16, pp. 283-294.CrossRefGoogle Scholar
  11. 11.
    11. H. Shibata, Y. Arai, M. Suzuki and T. Emi: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 981-991.CrossRefGoogle Scholar
  12. 12.
    12. H. Nassar and H. Fredriksson: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2776-2783.CrossRefGoogle Scholar
  13. 13.
    13. D. Phelan, M. Reid and R.Dippenaar: Mater. Sci. Eng. A, 2008, vol. 477A, pp. 226-232.CrossRefGoogle Scholar
  14. 14.
    14. M. Reid, D. Phelan and R. Dippenaar: ISIJ Int., 2004, vol. 44, pp. 565-572.CrossRefGoogle Scholar
  15. 15.
    15. S. Griesser, C. Bernhard, R. Dippenaar: Acta Mater., 2014, vol. 81, pp. 111-120.CrossRefGoogle Scholar
  16. 16.
    16. S. Griesser, C. Bernhard and R. Dippenaar: ISIJ Int., 2014, vol. 54, pp. 466-473.CrossRefGoogle Scholar
  17. 17.
    Steinbach I, Pezzolla F, Nestler B, Seeβelberg M, Prieler R, Schmitz GJ, Rezende JLL (1996) Physica D 94:135-147.CrossRefGoogle Scholar
  18. 18.
    18. J. Tiaden, B. Nestler, H. J. Diepers and I. Steinbach: Physica D, 1998, vol. 115, pp. 73-86.CrossRefGoogle Scholar
  19. 19.
    19. J. Tiaden: J. Cryst. Growth, 1999, vol. 198-199, pp. 1275-1280.CrossRefGoogle Scholar
  20. 20.
    20. B. Nestler and A. Wheeler: Physica D, 2000, vol. 138, pp. 114-133.CrossRefGoogle Scholar
  21. 21.
    21. A. Choudhury, B. Nestler, A. Telang, M. Selzer and F. Wendler: Acta Mater., 2010, vol. 58, pp. 3815-3823.CrossRefGoogle Scholar
  22. 22.
    22. J. S. Lee, S. G. Kim, W. T. Kim and T. Suzuki: ISIJ Int., 1999, vol. 39, pp. 730-736.CrossRefGoogle Scholar
  23. 23.
    Kim SG, Kim WT, Suzuki T (1998) Phys Rev E 58:7186-7197CrossRefGoogle Scholar
  24. 24.
    24. M. Ode, S. G. Kim, W. T. Kim and T. Suzuki: ISIJ Int., 2005, vol. 45, pp. 147-149.CrossRefGoogle Scholar
  25. 25.
    25. D. Phelan, M. Reid and R. Dippenaar: Comp. Mater. Sci., 2005, vol. 34, pp. 282-289.CrossRefGoogle Scholar
  26. 26.
    26. D. Phelan, M. Reid and R. Dippenaar: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 985-994.CrossRefGoogle Scholar
  27. 27.
    27. M. Ohno and K. Matsuura: Acta Mater., 2010, vol. 58, pp. 5749-5758.CrossRefGoogle Scholar
  28. 28.
    28. M. Ohno and K. Matsuura: ISIJ Int., 2010, vol. 50, pp. 1879-1885.CrossRefGoogle Scholar
  29. 29.
    29. L. Zhang, M. Stratmann, Y. Du, B. Sundman and I. Steinbach: Acta Mater., 2015, vol. 88, pp. 156-169.CrossRefGoogle Scholar
  30. 30.
    30. S. Y. Pan, M. F. Zhu and M. Rettenmayr: Acta Mater., 2017, vol. 132, pp. 565-575.CrossRefGoogle Scholar
  31. 31.
    31. S. Y. Pan and M. F. Zhu: Acta Mater., 2018, vol. 146, pp. 63-75.CrossRefGoogle Scholar
  32. 32.
    32. S. G. Kim, W. T. Kim, T. Suzuki and M. Ode: J. Crystal Growth, 2004, vol. 261, pp. 135-158.CrossRefGoogle Scholar
  33. 33.
    33. M. Ohno and K. Matsuura: Acta Mater., 2010, vol. 58, pp. 6134-6141.CrossRefGoogle Scholar
  34. 34.
    34. M. Hillert: Solidification and Casting of Metals, 1st ed., The Metals Society, London, 1979, pp. 81.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Sen Luo
    • 1
    • 2
    Email author
  • Guangguang Liu
    • 1
    • 2
  • Peng Wang
    • 1
    • 2
  • Xiaohua Wang
    • 3
  • Weiling Wang
    • 1
    • 2
  • Miaoyong Zhu
    • 1
    • 2
  1. 1.Key Laboratory for Ecological Metallurgy of Multimetallic Ores (Ministry of Education)Northeastern UniversityShenyangChina
  2. 2.School of MetallurgyNortheastern UniversityShenyangChina
  3. 3.College of Chemistry, Chemical Engineering and Environmental EngineeringLiaoning Shihua UniversityFushunChina

Personalised recommendations