Advertisement

Processing and Characterization of Extremely Hard and Strong Cu-(0-15 wt pct)Al Alloys

  • Mahammad Ali Shaik
  • Brahma Raju GollaEmail author
  • Suresh Babu Pitchuka
Article
  • 40 Downloads

Abstract

The present work investigates the microstructure development and mechanical properties of mechanically alloyed and hot-pressed copper (Cu)-X wt pct aluminum (Al) (X = 0, 3, 5, 10, 15) alloys. The morphology of the ball-milled Cu-Al powders changed from coarse flaky structure to small hard agglomerates with the addition of Al. It was observed that the density of Cu-Al samples varied between ~ 95 and 98 pct of theoretical density (ρth) after hot pressing (Temperature: 500 °C, Pressure: 500 MPa, Time: 30 min). The crystallite size of Cu-Al samples decreased for both the milled powders and hot-pressed samples. The XRD and SEM-EDS analyses of the hot-pressed samples confirmed the presence of α-Cu solid solution phases for the Cu alloyed with Al up to 5 wt pct. On the other hand, further addition of Al to Cu leads to the formation of both intermetallic compound (Cu9Al4) and solid solution phase. The nano-indentation tests indicated a significant increase in hardness (2.4 to 7.9 GPa) and elastic modulus (121.1 to 177.4 GPa) of Cu-Al alloys. The Cu-Al alloys were measured with very high compressive strength (813.8 to 1120.2 MPa) and the compressive strain varied in the range of 29.81 to 5.81 pct.

Notes

Funding

Ministry of Human Resource and Development, Government of India is gratefully acknowledged for the financial support to procure hot press equipment under plan grants (Departmental Plan-Grant Funds Code No: P828) that is used in the present work.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    1 H. Jang, K. Ko, S.J. Kim, R.H. Basch, and J.W. Fash: Wear, 2004, vol. 256, pp. 406–14.CrossRefGoogle Scholar
  2. 2.
    2 H.M. Zaw, J.Y.H. Fuh, A.Y.C. Nee, and L. Lu: J. Mater. Process. Technol., 1999, vol. 89, pp. 182–6.CrossRefGoogle Scholar
  3. 3.
    3 D. Prokoshkina, V.A. Esin, and S. V Divinski: Acta Mater., 2017, vol. 133, pp. 240–6.CrossRefGoogle Scholar
  4. 4.
    4 M. Rabiee, H. Mirzadeh, and A. Ataie: J. Ultrafine Grained Nanostructured Mater., 2016, vol. 49, pp. 17–21.Google Scholar
  5. 5.
    A. Heidarzadeh and T. Saeid: Rare Met., 2016, vol. 35. pp. 1–11.CrossRefGoogle Scholar
  6. 6.
    6 A.E. Nassef, A.I. Alateyah, M.A. El-Hadek, and W.H. El-Garaihy: Adv. Mater. Lett., 2017, vol. 8, pp. 717–22.CrossRefGoogle Scholar
  7. 7.
    7 G.S. Jawaharram, S.J. Dillon, and R.S. Averback: J. Mater. Res., 2017, vol. 32, pp. 3156–64.CrossRefGoogle Scholar
  8. 8.
    8 J. Guo, J. Rosalie, R. Pippan, and Z. Zhang: Scr. Mater., 2017, vol. 133, pp. 41–4.CrossRefGoogle Scholar
  9. 9.
    J.R. Davis and A.S.M.I.H. Committee (2001) Copper and Copper Alloys, ASM International, Cleveland.Google Scholar
  10. 10.
    10 A. Korneva, B. Straumal, A. Kilmametov, R. Chulist, P. Straumal, and P. Zięba: Mater. Charact., 2016, vol. 114, pp. 151–6.CrossRefGoogle Scholar
  11. 11.
    A.T. Vijayashakthivel, T.N. SrikanthaDath, and R. Krishnamurthy: Proc. Eng., 2014, vol. 97, pp. 56–63.CrossRefGoogle Scholar
  12. 12.
    M.I. Latypov, E.Y. Yoon, D.J. Lee, R. Kulagin, Y. Beygelzimer, M. SeyedSalehi, and H.S. Kim: Metall. Mater. Trans. A 2014, vol. 45, pp. 2232–41.CrossRefGoogle Scholar
  13. 13.
    13 S. Tamimi, M. Ketabchi, N. Parvin, M. Sanjari, and A. Lopes: Int. J. Met., 2014, vol. 2014, pp. 1–9.CrossRefGoogle Scholar
  14. 14.
    14 W. Głuchowski, J. Stobrawa, Z. Rdzawski, and W. Malec: Mater. Sci. Forum, 2011, vol. 674, pp. 177–88.CrossRefGoogle Scholar
  15. 15.
    15 Y.L. Gong, S.Y. Ren, S.D. Zeng, and X.K. Zhu: Mater. Sci. Eng. A, 2016, vol. 659, pp. 165–71.CrossRefGoogle Scholar
  16. 16.
    16 H.S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata, and M. Ushio: Mater. Sci. Eng. A, 2004, vol. 371, pp. 160–9.CrossRefGoogle Scholar
  17. 17.
    17 H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia: Acta Mater., 2013, vol. 61, pp. 2769–82.CrossRefGoogle Scholar
  18. 18.
    18 H. Wen and E.J. Lavernia: Scr. Mater., 2012, vol. 67, pp. 245–8.CrossRefGoogle Scholar
  19. 19.
    19 J.-P. Kruth, P. Peeters, T. Smolderen, J. Bonse, T. Laoui, and L. Froyen: Rev. Int. CFAO dinformatique Graph., 1998, vol. 13, pp. 95–110.Google Scholar
  20. 20.
    20 J.-P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts: Rapid Prototyp. J., 2005, vol. 11, pp. 26–36.CrossRefGoogle Scholar
  21. 21.
    21 F.A. Calvo, A. Ureng, J.M. Gomez De Salazar, and F. Molleda: J. Mater. Sci., 1988, vol. 23, pp. 2273–80.CrossRefGoogle Scholar
  22. 22.
    Copper Development Association: Equilibrium Diagrams the Major Types of Phase Transformation, 1992.Google Scholar
  23. 23.
    23 C.Y. Chen and W.S. Hwang: Mater. Trans., 2007, vol. 48, pp. 1938–47.CrossRefGoogle Scholar
  24. 24.
    24 L. Wu, L. Liu, J. Liu, and R. Zhang: Mater. Trans., 2012, vol. 53, pp. 504–7.CrossRefGoogle Scholar
  25. 25.
    25 H.Y. Wang, Y. Chen, Y.W. Liu, F. Li, J.H. Liu, G.-R. Peng, and W.K. Wang: Chin. Phys. Lett., 2009, vol. 26, art. no. 106201.CrossRefGoogle Scholar
  26. 26.
    26 D.S. Zhou, D.L. Zhang, C. Kong, and P. Munroe: Mater. Sci. Eng. A, 2013, vol. 584, pp. 67–72.CrossRefGoogle Scholar
  27. 27.
    27 M.F. Giordana, N. Munoz-vasquez, M. Garro-gonzalez, and M.R. Esquivel: Procedia Mater. Sci., 2015, vol. 9, pp. 262–70.CrossRefGoogle Scholar
  28. 28.
    28 R.H. Palma, A.H. Sepúlveda, R.A. Espinoza, and R.C. Montiglio: J. Mater. Process. Technol., 2005, vol. 169, pp. 62–6.CrossRefGoogle Scholar
  29. 29.
    29 F. Wang, Y. Li, K. Yamanaka, K. Wakon, K. Harata, and A. Chiba: Mater. Des., 2014, vol. 64, pp. 441–9.CrossRefGoogle Scholar
  30. 30.
    30 Y. Guo, G. Liu, H. Jin, Z. Shi, and G. Qiao: J. Mater. Sci., 2011, vol. 46, pp. 2467–73.CrossRefGoogle Scholar
  31. 31.
    H. Baker, A.S.M. Handbook: Vol 3: Alloy Phase Diagrams, 1992. ASM International, Materials ParkGoogle Scholar
  32. 32.
    32 Massalski T: Binary Alloy Phase Diagrams, AIP, Materials Park, Ohio, 1990.Google Scholar
  33. 33.
    V. Raghavan (2015) Physical Metallurgy: Principles and Practice. Third Edition. Prentice Hall India Pvt Limited, New DelhiGoogle Scholar
  34. 34.
    34 I. Cenoz: Metalurgija, 2010, vol. 16, pp. 115–22.Google Scholar
  35. 35.
    35 H.M. Otte: J. Appl. Phys., 1962, vol. 33, pp. 2892–3.CrossRefGoogle Scholar
  36. 36.
    J.S. LlewelynLeach: J. Inst. Met., 1964, vol. 92, pp. 93–94.Google Scholar
  37. 37.
    L. Arnberg and S. Westman: Acta Crystallogr. Sect. A 1978, vol. 34, pp. 399–404.CrossRefGoogle Scholar
  38. 38.
    38 V. Rajkovic, D. Bozic, and M.T. Jovanovic: Metalurgija, 2007, vol. 13, pp. 309–16.Google Scholar
  39. 39.
    39 W. He, E. Wang, L. Hu, Y. Yu, and H. Sun: J. Mater. Process. Technol., 2008, vol. 208, pp. 205–10.CrossRefGoogle Scholar
  40. 40.
    40 A.S. Sharma, K. Biswas, B. Basu, and D. Chakravarty: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2072–84.CrossRefGoogle Scholar
  41. 41.
    41 A. Nassef and M. El-Hadek: Adv. Mater. Sci. Eng., 2016, vol. 53, pp. 38–42.Google Scholar
  42. 42.
    42 C. Martinez, F. Briones, P. Rojas, S. Ordonez, C. Aguilar, and D. Guzman: MRS Adv., 2017, vol. 2, pp. 2831–6.CrossRefGoogle Scholar
  43. 43.
    A. KhorsandZak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi: Solid State Sci., 2011, vol. 13, pp. 251–56.CrossRefGoogle Scholar
  44. 44.
    V.D. Mote, Y. Purushotham, and B.N. Dole: J. Theor. Appl. Phys., 2012, vol. 6, art. no. 6.CrossRefGoogle Scholar
  45. 45.
    45 S.F. Varol, G. Babur, G. Cankaya, and U. Kolemen: RSC Adv., 2014, vol. 4, pp. 56645–53.CrossRefGoogle Scholar
  46. 46.
    46 T.D. Shen, R.B. Schwarz, and J.D. Thompson: Phys. Rev. B, 2005, vol. 72, art no. 14431.CrossRefGoogle Scholar
  47. 47.
    47 A. Rohatgi, K.S. Vecchio, and I.G.T. Gray: Acta Mater., 2001, vol. 49, pp. 427–38.CrossRefGoogle Scholar
  48. 48.
    48 Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon: Appl. Phys. Lett., 2006, vol. 89, art no. 121906.CrossRefGoogle Scholar
  49. 49.
    49 Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Appl. Phys. Lett., 2008, vol. 92, art no. 81903.CrossRefGoogle Scholar
  50. 50.
    50 G. Liu, J. Gu, S. Ni, Y. Liu, and M. Song: Mater. Charact., 2015, vol. 103, pp. 107–19.CrossRefGoogle Scholar
  51. 51.
    51 F. Glas: Tribol. und Schmierungstechnik, 2005, vol. 52, pp. 55–63.Google Scholar
  52. 52.
    52 K. Biswas, A.S. Sharma, and B. Basu: Scr. Mater., 2013, vol. 69, pp. 122–6.CrossRefGoogle Scholar
  53. 53.
    53 B.K. Prasad: Metall. Mater. Trans. A, 1997, vol. 28, pp. 809–15.CrossRefGoogle Scholar
  54. 54.
    54 W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.CrossRefGoogle Scholar
  55. 55.
    55 R. Saha and W.D. Nix: Acta Mater., 2002, vol. 50, pp. 23–38.CrossRefGoogle Scholar
  56. 56.
    56 D.M. Ebenstein and L.A. Pruitt: Nano Today, 2006, vol. 1, pp. 26–33.CrossRefGoogle Scholar
  57. 57.
    L.L. Wu, L. Liu, M.S. Qi, J.H. Liu, R.J. Zhang (2012) Advanced Materials Research, vol. 562–564, Trans Tech Publications, Zurich, pp. 196–99.Google Scholar
  58. 58.
    P. Kucita, S.C. Wang, W.S. Li, R.B. Cook, M.J. Starink: J. Phys. Conf. Ser. vol. 644, 2015, art no. 12010.CrossRefGoogle Scholar
  59. 59.
    59 K.S. Lee and K. Yong-Nam: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 341–6.CrossRefGoogle Scholar
  60. 60.
    60 J. Chen, Y.N. Shi, and K. Lu: J. Mater. Res., 2005, vol. 20, pp. 2955–9.CrossRefGoogle Scholar
  61. 61.
    61 R.R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis: J. Mater. Res., 2003, vol. 18, pp. 2251–61.CrossRefGoogle Scholar
  62. 62.
    62 J.Y. Zhang, J.T. Zhao, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, and J. Sun: Acta Mater., 2018, vol. 143, pp. 55–66.CrossRefGoogle Scholar
  63. 63.
    63 F. Misjak, P.B. Barna, A.L. Toth, T. Ujvari, I. Bertoti, and G. Radnoczi: Thin Solid Films, 2008, vol. 516, pp. 3931–4.CrossRefGoogle Scholar
  64. 64.
    64 B.J. Briscoe, L. Fiori, and E. Pelillo: J. Phys. D. Appl. Phys., 1998, vol. 31, p. 2395.CrossRefGoogle Scholar
  65. 65.
    65 M.M. Shokrieh, M.R. Hosseinkhani, M.R. Naimi-Jamal, and H. Tourani: Polym. Test., 2013, vol. 32, pp. 45–51.CrossRefGoogle Scholar
  66. 66.
    66 D. Beegan, S. Chowdhury, and M.T. Laugier: Surf. Coatings Technol., 2005, vol. 192, pp. 57–63.CrossRefGoogle Scholar
  67. 67.
    67 S.-R. Jian, C.-H. Tasi, S.-Y. Huang, and C.-W. Luo: J. Alloys Compd., 2015, vol. 622, pp. 601–5.CrossRefGoogle Scholar
  68. 68.
    68 B. Lauterbach and D. Gross: Mech. Mater., 1998, vol. 29, pp. 81–92.CrossRefGoogle Scholar
  69. 69.
    69 E. van der Heide, E.D. Stam, H. Giraud, G. Lovato, N. Akdut, F. Clarysse, P. Caenen, and I. Heikillä: Wear, 2006, vol. 261, pp. 68–73.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Mahammad Ali Shaik
    • 1
  • Brahma Raju Golla
    • 1
    Email author
  • Suresh Babu Pitchuka
    • 2
  1. 1.Metallurgical and Materials Engineering DepartmentNational Institute of TechnologyWarangalIndia
  2. 2.International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia

Personalised recommendations