A New Constitutive Model for Thermal Deformation of Magnesium Alloys

  • Jian Zeng
  • Fenghua WangEmail author
  • Xiaoxiao Wei
  • Shuai Dong
  • Zhenyan Zhang
  • Jie Dong


Based on the stress–strain curves of as cast Mg-8Gd-3Y alloy, which were obtained by isothermal compression tests at temperatures ranging from 350 °C to 450 °C and strain rates from 0.001 to 1.5 s−1, a new constitutive model for thermal deformation of magnesium alloys was proposed from the functional relationship between the ratio of instantaneous stress to peak stress (σ/σp) and that of instantaneous strain to peak strain (ε/εp). The undetermined parameters of the model were calculated through parameter regression, and the predicted results agree well with the experimental results. To study the applicability and accuracy of the new model, the stress–strain curves of the compression tests of AZ31B and ZK60 alloys in the literature were modeled and calculated by parameter regression, and their predicted values are very close to the experimental values. Then, the new constitutive model was integrated into a finite element software to simulate the load–stroke curves of isothermal upsetting of the specimen with variable cross-section and plane strain forging of Mg-8Gd-3Y alloy. Under six different process parameters, the simulated load–stroke curves are well consistent with the experimental curves. All the results verify the accuracy of the new model for thermal deformation of magnesium alloys.



The authors gratefully acknowledge the supports of the National Key Research and Development Program of China (Grant No. 2016YFB0301103), the National Natural Science Foundation of China (Grant No. 51601112), and the Shanghai Rising-Star Program (Grant Nos. 16QB1402800 and 17QB1403000).


  1. 1.
    C. Meng, Z.K. Chen, H.N. Yang, G. Li, X.L. Wang and H. Bao: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 5192–5204.CrossRefGoogle Scholar
  2. 2.
    D. Ghosh, O.T. Kingstedt and G. Ravichaneran: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 14–19.CrossRefGoogle Scholar
  3. 3.
    H.C. Pan, F.H. Wang, M.L. Feng, L. Jin, J. Dong and P.D. Wu: Mater. Sci. Eng. A, 2018, vol. 712, pp. 585–91.CrossRefGoogle Scholar
  4. 4.
    H.L. Chen, J. Yang, H. Zhou, J. Moering, Z. Yin, Y.L. Gong and K.Y. Zhao: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3961–70.CrossRefGoogle Scholar
  5. 5.
    S.M. Fatemi, A. Zarei-Hanzaki and J.M. Cabrera: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2563–73.CrossRefGoogle Scholar
  6. 6.
    J.Q. Li, J. Liu and Z.S. Cui: Mater. Sci. Eng. A, 2015, vol. 643, pp. 32–36.CrossRefGoogle Scholar
  7. 7.
    M.Z. Bian, Z.R. Zeng, S.W. Xu, W.N. Tang, C.H.J. Davies, N. Birbilis and J.F. Nie: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5709–13.CrossRefGoogle Scholar
  8. 8.
    Y.Y. Dong, C.S. Zhang, X. Lu, C.X. Wang and G.Q. Zhao: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2567–81.Google Scholar
  9. 9.
    Y.J. Wang, J. Peng, L.P. Zhong and F.S. Pan: J. Alloys Compd., 2016, vol. 681, pp. 455–70.CrossRefGoogle Scholar
  10. 10.
    W.T. Jia, S. Xu, Q.C. Le, L. Fu, L.F. Ma and Y. Tang: Mater. Des., 2016, vol. 106, pp. 120–32.CrossRefGoogle Scholar
  11. 11.
    Y.J. Qin, Q.L. Pan, Y.B. He, W.B. Li, X.Y. Liu and X. Fan: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2790–97.CrossRefGoogle Scholar
  12. 12.
    H.T. Zhou, C.M. Liu and M.A. Chen: Mater. Sci. Tech., 2006, vol. 22, pp. 597–603.CrossRefGoogle Scholar
  13. 13.
    Z.W. Cai, F.X. Chen and J.Q. Guo: J. Alloys Compd., 2015, vol. 648, pp. 215–22.CrossRefGoogle Scholar
  14. 14.
    L.C. Tsao, Y.T. Huang and K.H. Fan: Mater. Des., 2014, vol. 53, pp. 865–69.CrossRefGoogle Scholar
  15. 15.
    H. Takuda, T. Morishita, T. Kinoshita and N. Shirakawa: J. Mater. Process. Tech., 2005, vol. 164–165, pp. 1258–62.CrossRefGoogle Scholar
  16. 16.
    J. Luan, C. Sun, X. Li and Q. Zhang: Mater. Sci. Technol., 2014, vol. 30, pp. 211–19.CrossRefGoogle Scholar
  17. 17.
    M.S. Arun and U. Chakkingal: Mater. Sci. Eng. A, 2019, vol. 754, pp. 659–73.CrossRefGoogle Scholar
  18. 18.
    H.T. Zhou, Q.B. Li, Z.K. Zhao, Z.C. Liu, S.F. Wen and Q.D. Wang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2022–26.CrossRefGoogle Scholar
  19. 19.
    G.Z. Quan, Y. Shi, C.T. Yu and J. Zhou: Mater. Res., 2013, vol. 16, pp. 785–91.CrossRefGoogle Scholar
  20. 20.
    Q. Tang, M.Y. Zhou, L.L. Fan, Y.W.X. Zhang, G.F. Quan and B. Liu: Vacuum, 2018, vol. 155, pp. 476–89.CrossRefGoogle Scholar
  21. 21.
    Z.J. Wang, L.H. Qi, G. Wang, H.J. Li and M.S. Dargusch: Mech. Mater., 2016, vol. 102, pp. 90–96.CrossRefGoogle Scholar
  22. 22.
    Mei RB, Bao L, Huang F, Zhang X, Qi XW, Liu XH (2018) Mech Mater 125:110–20CrossRefGoogle Scholar
  23. 23.
    H. Yu, H.S. Yu, G. H. Min, S.S. Park, B.S. You and Y.M. Kim: Met. Mater. Int., 2013, vol. 19, pp. 651–65.CrossRefGoogle Scholar
  24. 24.
    L. Li and X.M. Zhang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1396–1401.CrossRefGoogle Scholar
  25. 25.
    Z.H. Zhou, Q.C. Fan, Z.H. Xia, A.G. Hao, W.H Yang, W. Ji and H.Q. Cao: J. Mater. Sci. Tech., 2017, vol. 33, pp. 637–44.CrossRefGoogle Scholar
  26. 26.
    R. Alizadeh, R. Mahmudi, O.A. Ruano and A.H.W. Ngan: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 5699–5709.CrossRefGoogle Scholar
  27. 27.
    J.Q. Hao, J.S. Zhang, C.X. Xu and K.B. Nie: J. Alloys Compd., 2018, vol. 754, pp. 283–96.CrossRefGoogle Scholar
  28. 28.
    Y. Sun, L.X. Hu and J.S. Ren: Mater. Charact., 2015, vol. 100, pp. 163–69.CrossRefGoogle Scholar
  29. 29.
    S. He, C.S. Li, Z.Y. Huang and J.J. Zheng: J. Mater. Res., 2017, vol. 32, pp. 3831–41.CrossRefGoogle Scholar
  30. 30.
    R. Bobbili and V. Madhu: Mater. Sci. Eng. A, 2017, vol. 700, pp. 82-91.CrossRefGoogle Scholar
  31. 31.
    H.T. Zhou, X.Q. Zeng, Q.D. Wang and W.J. Ding: Acta Metall. Sin., 2004, vol. 17, pp. 155–60.Google Scholar
  32. 32.
    L.X. Xu, H.B. Wu and B.S. Xie: Mater. Sci. Technol., 2018, vol. 34, pp. 229–41.CrossRefGoogle Scholar
  33. 33.
    Y. Bergstrom: Mater. Sci. Eng., 1970, vol. 5, pp. 193–200.CrossRefGoogle Scholar
  34. 34.
    A. Laasraoui and J.J. Jonas: Metall. Trans. A, 1991, vol. 22A, pp. 151–60.CrossRefGoogle Scholar
  35. 35.
    A. Laasraoui and J.J. Jonas: Metall. Trans. A, 1991, vol. 22A, pp. 1545–1558.CrossRefGoogle Scholar
  36. 36.
    S. Serajzadeh and A.K. Taheri: Mech. Res. Commun., 2003, vol. 30, pp. 87–93.CrossRefGoogle Scholar
  37. 37.
    J. Liu, Z.S. Cui and C.X. Li: Comp. Mater. Sci., 2008, vol. 41, pp. 375–82.CrossRefGoogle Scholar
  38. 38.
    C. Wang, J. Liu and Z.S. Cui: J. Plast. Eng., vol. 18, pp. 22–27. (In Chinese)Google Scholar
  39. 39.
    L. Yuan, Z. Zhao, W.C. Shi, F.C. Xu and D.B. Shan: Int. J. Adv. Manuf. Technol., 2015, vol. 78, pp. 2037–47.CrossRefGoogle Scholar
  40. 40.
    Y. Liu, C. Geng, Q.Q. Lin, Y.F. Xiao, J.R. Xu and W. Kang: J. Alloys Compd., 2017, vol. 713, pp. 212–21.CrossRefGoogle Scholar
  41. 41.
    Z.P. Guan, M.W. Ren, P. Zhao, P.K. Ma and Q.L. Wang: Mater. Des., 2014, vol. 54, pp. 906–13.CrossRefGoogle Scholar
  42. 42.
    H.T. Zhou, X.Q. Zeng, L.L. Liu, J. Dong, Q.D. Wang, W.J. Ding and Y.P. Zhu: Mater. Sci. Tech., 2004, vol. 20, pp. 1397–1402.CrossRefGoogle Scholar
  43. 43.
    A.M.S. Hamouda: J. Mater. Process. Tech., 2002, vol. 124, pp. 209–15.CrossRefGoogle Scholar
  44. 44.
    J. Liu, Z.S. Cui and C.X. Li: J. Mater. Process. Tech., 2008, vol. 205, pp. 497–505.CrossRefGoogle Scholar
  45. 45.
    A. Hadadzadeh, M.A. Wells, S.K. Shaha, H. Jahed and B.W. Williams: J. Alloys Compd., 2017, vol. 702, pp. 274–89.CrossRefGoogle Scholar
  46. 46.
    H.J. Hu, H. Wang, Z.Y. Zhai, Y.Y. Li, J.Z. Fan and Z.W. Qu: Int. J. Adv. Manuf. Technol., 2015, vol. 76, pp. 1621–30.CrossRefGoogle Scholar
  47. 47.
    S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou and J.F. Fan: Mater. Des., 2014, vol. 64, pp. 177–84.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Jian Zeng
    • 1
  • Fenghua Wang
    • 1
    Email author
  • Xiaoxiao Wei
    • 1
  • Shuai Dong
    • 1
  • Zhenyan Zhang
    • 1
  • Jie Dong
    • 1
  1. 1.National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations