Advertisement

Effects of Prior Austenite Grain Size on Hydrogen Delayed Fracture of Hot-Stamped Boron Martensitic Steel

  • Hye-Jin KimEmail author
Article
  • 46 Downloads

Abstract

Understanding the hydrogen delayed fracture requires elucidating the interaction of relevant cracks based on the microstructural features. The microstructural features of a hydrogen delayed fracture were studied for martensitic steel under different soaking times and prior austenite grain sizes based on the furnace temperature. A considerable correlation is investigated between the coarseness of the austenite grain and degree of susceptibility on a hydrogen delayed fracture. The deterioration of hydrogen delayed fracture is attributed to reversible hydrogen in the microstructure sites with a low trapping energy weakening the grain boundary and rapidly propagating the crack initiation.

Notes

Acknowledgment

This work was carried out at the Hyundai-Steel Research and Development Center of the Republic of Korea.

References

  1. 1.
    E.R.H. Fuchs, F.R. Field, R. Roth, R.E. Kirchain, Compos. Sci. Technol,. 2008, Vol.68, 1989-2002CrossRefGoogle Scholar
  2. 2.
    Development of Ultra High Strength Steels for Reduced Carbon Emissions in Automotive Vehicles, in Project Outlines, ed. Sheffield: University of Sheffield and University of Manchester, 2010, p. 11Google Scholar
  3. 3.
    M. Miyanishi, Metal Forming, 2010, Vol.81, 1-8Google Scholar
  4. 4.
    K. Hasegawa, K. Kaneko, K. Seto, JFE Technical Report, 2013, Vol.18, 80-88Google Scholar
  5. 5.
    T. Tayor, A. Clough, Mater. Sci. Technol., 2018, Vol.34, 809-861CrossRefGoogle Scholar
  6. 6.
    P. Namklang, V. Uthaisangsuk, J. Manuf. Process, 2016, Vol.21, 87-100CrossRefGoogle Scholar
  7. 7.
    M. Merklein, M. Weiland, M. Lechnera, S. Bruschi, A. Ghiotti, Journal of Materials Processing Technology, 2016, Vol.228, 11-24CrossRefGoogle Scholar
  8. 8.
    J. Bian, H. Mohrbacher, S. Zhan, W. Wang, Y. Zhang, L. Wang: Proc. 5th Int. Conf. Hot Sheet Metal Form. High-Perf. Steel, Toronto, pp. 65–74.Google Scholar
  9. 9.
    G. Lovicu, M. Bottazzi, F. Daiuto, M. De Sanctis, A. Dimatteo, C. Santus, R. Valentini: Phys. Metall. Mater. Sci., 2012, Vol. 43, 4075-4087CrossRefGoogle Scholar
  10. 10.
    H.J. Kim, S.H. Jeon, W.S. Yang, B.G. Yoo, Y.D. Chung, H.Y. Ha, H.Y. Chung, J. Alloys Comp. ,2018, Vol.735, 2067-2080CrossRefGoogle Scholar
  11. 11.
    S. Ootsuka, S. Fujita, E. Tada, A. Nishikata, T. Tsuru, Corros. Sci., 2015, Vol.98, 430-437CrossRefGoogle Scholar
  12. 12.
    C. Georges, T. Sturel, P. Drillet, J.M. Mataigne, ISIJ International, 2013, Vol.53, 1295-1304CrossRefGoogle Scholar
  13. 13.
    G.M. Pressouyre, I.M. Bernstein, Metal. Trans., 1981, Vol.12, 835-844CrossRefGoogle Scholar
  14. 14.
    K. Takai, R. Watanuki, ISIJ International, 2003, Vol.43, 520-526CrossRefGoogle Scholar
  15. 15.
    K. Takai, H. Shouda, H. Suzuki, M. Nagumo, Acta Materia., 2008, Vol.56, 5158-5167CrossRefGoogle Scholar
  16. 16.
    M. Koyama, C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Acta Mater., 2014, Vol.70, 174-187CrossRefGoogle Scholar
  17. 17.
    S.P. Lynch: Corrosion NACE International, 2007.Google Scholar
  18. 18.
    H.K. Birnbaum, P. Sofronis, Mater. Sci. Eng. A, 1994, Vol.176, 191-202CrossRefGoogle Scholar
  19. 19.
    R.A. Oriani, P.H. Josephic, Acta Metall., 1974, Vol.22, 1065-1074CrossRefGoogle Scholar
  20. 20.
    I.M. Robertson, Eng. Fracture Mech., 2001, Vol.68, 671-692CrossRefGoogle Scholar
  21. 21.
    S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, Acta Materialia, 2006, Vol.54, 5323-5331CrossRefGoogle Scholar
  22. 22.
    A.R. Marder, G. Krauss, Trans. ASM, 1967, Vol.60, 651-660Google Scholar
  23. 23.
    R.O. Ritchie, B. Francis, W.L. Server, Metall. Mater. Tran. A, 1976, Vol.7, 831-838CrossRefGoogle Scholar
  24. 24.
    W. Jeff, E. Charles, S. Jatinder, H. Curt: SAE Int. J. Mater. Manuf., 2016, Vol. 9, 488-93CrossRefGoogle Scholar
  25. 25.
    K. Hikida, T. Nishibata, H. Kikuchi, T. Suzuki, N. Nakayama N: Proc. 4th Int. Conf. Hot Sheet Metal Form. High-Perform. Steel, 2013, pp. 127–34Google Scholar
  26. 26.
    A. Shibata, H. Takahashi, N. Tsuji, ISIJ Int., 2012, Vol.52, 208-212CrossRefGoogle Scholar
  27. 27.
    R. Gangloff, B. Somerday (eds), Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Mechanisms, Modelling and Future Developments. Elsevier, Amsterdam, 2012Google Scholar
  28. 28.
    J. Song, W. Curtin, Nat. Mater., 2013, Vol.12, 145-151CrossRefGoogle Scholar
  29. 29.
    K. Mori, P.F. Bariani, B.A. Beherens, A. Brosius, S. Bruschi, T. Maeno, M. Merklein, J. Yanagimoto, CIRP Annals- Manufacturing Technology, 2017, Vol.66, 755-777CrossRefGoogle Scholar
  30. 30.
    A. Ghiotti, S. Bruschi, F. Borsetto, Journal of Materials Processing Technology, 2011, Vol.211, 1694-1700CrossRefGoogle Scholar
  31. 31.
    W.J. Hui, Z.B. Xu, Y.J. Zhang, X.L. Zhao, C.W. Shao, Y.Q. Weng, Mater. Sci. Eng. A , 2017, Vol.704, 199-206CrossRefGoogle Scholar
  32. 32.
    M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, I.M. Rodertson, Acta Materialia, 2008, Vol.59, 1601-1606CrossRefGoogle Scholar
  33. 33.
    P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie, Journal of the Mechanics and Physics of Solids, 2010, Vol.58, 206-226.CrossRefGoogle Scholar
  34. 34.
    D. Pérez-Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, K. Verbeken: Corros. Sci., 2012, Vol. 65, 199-208CrossRefGoogle Scholar
  35. 35.
    F.G. Wei, K. Tsuzaki, Metall. Mater. Trans. A, 2006, Vol.37A, 331-353CrossRefGoogle Scholar
  36. 36.
    P.D. Hicks, C.J. Altsteter, Metallallurgical Transaction A, 2003, Vol.23A, 513-522Google Scholar
  37. 37.
    N.R. Moody, R.E. Stoltz, M.W. Perra, Metallurigical Transaction A, 1987, Vol.18A, 1469-1482CrossRefGoogle Scholar
  38. 38.
    N.R. Moody, S.L. Robinson, M.W. Perra, Engineering Fracture Mechanics, 1991, Vol.39, 941-954CrossRefGoogle Scholar
  39. 39.
    I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren: Metall. Mater. Trans. A, 2015, Vol. 46A, 2323-2341CrossRefGoogle Scholar
  40. 40.
    A. Kishi, N. Takano, J. Phys. Conf. Ser. 2010, 230Google Scholar
  41. 41.
    M. Pappes, M. Iannuzzi, R. M. Carranza, , J. Electrochem. Soc., 2013, Vol.160, 168-178Google Scholar
  42. 42.
    S.J. Lee, A.R. Joseph, K. George, K.M. David, ISIJ Int., 2010, Vol.50, 294-301CrossRefGoogle Scholar
  43. 43.
    Q. Liu, Q. Zhou, J. Venezuela, M. Zhang, J. Wang, A. Atrens, Corrosion Reviews, 2016, Vol.34, 127-152CrossRefGoogle Scholar
  44. 44.
    M.L. Martin, I.M. Robertson, P. Sofronis, Acta Materialia, 2011, Vol.59, 3680-3687CrossRefGoogle Scholar
  45. 45.
    T. Neeraj, R. Srinivasan, J. Li, Acta Materialia, 2012, Vol.60, 5160-5171CrossRefGoogle Scholar
  46. 46.
    A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson, Acta Materialia, 2012, Vol. 60, 5182-5189CrossRefGoogle Scholar
  47. 47.
    J. Tien, A. Thompson, I. Bernstein, R. Richards, Metall. Mater. Trans. A, 1976, Vol.7A, 821-829CrossRefGoogle Scholar
  48. 48.
    J. Albrecht, I.M. Bernstein, A.W. Thompson, Metall. Trans. Mater. A, 1982, Vol. 13A, 811-820CrossRefGoogle Scholar
  49. 49.
    G.F. Li, R.G. Wu, T.C. Lei, Metall. Trans. A, 1992, Vol.23, 2879-2885CrossRefGoogle Scholar
  50. 50.
    V. Olden, C. Thaulow, R. Johnsen, Materials and Design, 2008, Vol.29 1934-1948CrossRefGoogle Scholar
  51. 51.
    W.C. Luu, J.K. Wu, Corros. Sci., 1996, Vol.38, 239-245CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Steel Application Engineering TeamTechnical Research CenterChungnamSouth Korea

Personalised recommendations