Estimated and Stationary Atmospheric Corrosion Rate of Carbon Steel, Galvanized Steel, Copper and Aluminum in Iran

  • Mahdi ShiriEmail author
  • Davar Rezakhani


Atmospheric corrosion of structural metals including aluminum, copper, carbon steel and galvanized steel has been investigated in various areas in Iran based on meteorological data and test coupon mass loss. Using annual average temperature and relative humidity (RH), the time of wetness (TOW, τ) of 51 cities in Iran was obtained in 2012. Coincidentally, sulfur dioxide (SO2) and chloride ion (Cl) concentrations were measured in these cities; then, according to ISO 9223, the predicted corrosion rate (rcorr) of aluminum, copper, carbon steel and galvanized steel was calculated. Geographical information system (GIS) modeling of TOW, air pollutants (sulfur dioxide and chloride ion) and estimated rcorr were extracted. The mentioned metallic coupons were exposed to the outdoor atmosphere of 15 test sites for up to 12 months to measure the actual corrosion rate of metals. The corrosion products were characterized using scanning electron microscopy and an X-ray diffractometer. The results show that the atmospheric corrosivity of Iran as a developing country is mainly affected by the air temperature, RH and Cl deposition rate. The atmosphere at shorelines is much more aggressive. Predicting the corrosion loss, the northern coastlines show a more corrosive atmosphere. On the contrary, coupons fixed at the southern coastlines are severely corroded compared with those fixed at the northern shorelines. Chabahar has the most corrosive atmosphere for carbon steel, galvanized steel and copper coupons where their actual corrosion rates (CRs) are 514.68, 10.25 and 11.01 μm/year, respectively. Aluminum coupons presented the best corrosion resistance at all test sites, and their CR were approximately nil. The result shows that models developed by ISO 9223 are not appropriate for predicting the atmospheric corrosion of aluminum, copper, galvanized steel and carbon steel in most areas in Iran.



This research is a part of the “Development of a Comprehensive Corrosion Atlas for the Power Industry of Iran” project and has been supported by the Niroo Research Institute (NRI) of Iran.


  1. 1.
    B.N. Popov: in Corrosion Engineering, Elsevier, Amsterdam, 2015, pp. 451–80.Google Scholar
  2. 2.
    P. A. Schweitzer: Atmospheric degradation and corrosion control, CRC Press, New York, 1999, pp. 1-5.Google Scholar
  3. 3.
    J.J.S. Rodrguez, F.J.S. Hernndez, and J.E.G. Gonzlez: Corrosion Science, 2003, vol. 45 (4), pp. 799-815.CrossRefGoogle Scholar
  4. 4.
    V. Kucera and E. Mattsson: in Corrosion Mechanisms, 1987, pp. 211–84.Google Scholar
  5. 5.
    ISO 9223: Classification of Corrosivity of Atmospheres, International Organization for Standardization (ISO), 2012.Google Scholar
  6. 6.
    C. Leygraf, I. O. Wallinder, J. Tidblad, and T. Graedel: Atmospheric corrosion, John Wiley & Sons, New Jersey, 2016, pp. 1.CrossRefGoogle Scholar
  7. 7.
    Z. Dan, I. Muto, and N. Hara: Corrosion Science, 2012, vol. 57, pp. 22-29.CrossRefGoogle Scholar
  8. 8.
    S. Oesch, and M. Faller: Corrosion Science, 1997, vol. 39 (9), pp. 1505-30.CrossRefGoogle Scholar
  9. 9.
    C. Yi, X. Du, Y. Yang, Y. Chen, G. Wei, Z. Yang, and Z. Zhang: Int. J. Electrochem. Sci., 2017, vol. 12, pp. 3597-3613.CrossRefGoogle Scholar
  10. 10.
    S. Sharma: Journal of the Electrochemical Society, 1978, vol. 125 (12), pp. 2005-2011.CrossRefGoogle Scholar
  11. 11.
    S. Feliu, M. Morcillo, and S. Feliu: Corrosion Science, 1993, vol. 34 (3), pp. 403-14.CrossRefGoogle Scholar
  12. 12.
    Y. Cai, Y. Zhao, X. Ma, K. Zhou, and Y. Chen: Corrosion Science, 2018, vol. 137, pp. 163-175.CrossRefGoogle Scholar
  13. 13.
    S. Feliu, M. Morcillo, and B. Chico: CORROSION, 1999, vol. 55 (9), pp. 883-891.CrossRefGoogle Scholar
  14. 14.
    ISO 8565: Metals and Alloys—Atmospheric Corrosion Testing (General Requirements), 2011.Google Scholar
  15. 15.
    S. Mridha: in Reference Module in Materials Science and Materials Engineering, Elsevier, Amsterdam, 2016.Google Scholar
  16. 16.
    A. Castañeda, C. Valdés, and F. Corvo: Materials and Corrosion, 2018, vol. 69 (10), pp. 1462-1477.CrossRefGoogle Scholar
  17. 17.
    R. Vera, D. Delgado, and B. M. Rosales: Corrosion Science, 2007, vol. 49 (5), pp. 2329-2350.CrossRefGoogle Scholar
  18. 18.
    J. Vilche, F. Varela, G. Acuna, E. Codaro, B. Rosales, A. Fernandez, and G. Moriena: Corrosion Science, 1995, vol. 37 (6), pp. 941-961.CrossRefGoogle Scholar
  19. 19.
    R. J. Cordner: British Corrosion Journal, 1990, vol. 25 (2), pp. 115-118.CrossRefGoogle Scholar
  20. 20.
    An Australia-Wide Map of Corrosivity: A GIS Approach, NRC Research Press, Ottawa, ON, Canada, 1999.Google Scholar
  21. 21.
    I. S. Cole, T. H. Muster, D. A. Paterson, S. A. Furman, G. S. Trinidad, and N. Wright: Materials Science Forum, 2007, vol. 561-565, pp. 2209-2212.CrossRefGoogle Scholar
  22. 22.
    M. O. G. Portella, K. F. Portella, P. A. M. Pereira, P. C. Inone, K. J. C. Brambilla, M. S. Cabussú, D. P. Cerqueira, and R. N. Salles: Procedia Engineering, 2012, vol. 42, pp. 171-185.CrossRefGoogle Scholar
  23. 23.
    Y. C. Sica, E. D. Kenny, K. F. Portella, and D. F. C. Filho: J. Braz. Chem. Soc., 2007, vol. 18 (1), pp. 153-166.CrossRefGoogle Scholar
  24. 24.
    M. Morcillo, B. Chico, D. de la Fuente, and J. Simancas: International Journal of Corrosion, 2012, vol. 2012, pp. 24.CrossRefGoogle Scholar
  25. 25.
    E. Del Angel, R. Vera, and F. Corvo: Int. J. Electrochem. Sci., 2015, vol. 10 (9), pp. 7985-8004.Google Scholar
  26. 26.
    F. Corvo, T. Pérez, Y. Martin, J. Reyes, L. Dzib, J. González-Sánchez, and A. Castañeda: in Environmental Degradation of Infrastructure and Cultural Heritage in Coastal Tropical Climate., Transworld Research Network, Kerala, India. Año, 2009, pp. 1–34.Google Scholar
  27. 27.
    F. Corvo, C. Haces, N. Betancourt, L. Maldonado, L. Véleva, M. Echeverria, O. T. De Rincón, and A. Rincon: Corrosion Science, 1997, vol. 39 (5), pp. 823-833.CrossRefGoogle Scholar
  28. 28.
    L. Maldonado, and L. Veleva: Materials and Corrosion, 1999, vol. 50 (5), pp. 261-266.CrossRefGoogle Scholar
  29. 29.
    F. Corvo, T. Perez, L. R. Dzib, Y. Martin, A. Castañeda, E. Gonzalez, and J. Perez: Corrosion Science, 2008, vol. 50 (1), pp. 220-230.CrossRefGoogle Scholar
  30. 30.
    M. Tullmin and P.R. Roberge: in Uhlig’s Corrosion Handbook, 2nd ed., Wiley, New York, 2000, pp. 305–321.Google Scholar
  31. 31.
    H. Ambler, and A. Bain: Journal of Applied Chemistry, 1955, vol. 5 (9), pp. 437-467.CrossRefGoogle Scholar
  32. 32.
    B. Callaghan: Atmospheric Corrosion Testing in Southern Africa, Wiley, 1982, pp. 893–912.Google Scholar
  33. 33.
    J. Dong, E. Han, and W. Ke: Sci. Technol. Adv. Mater., 2007, vol. 8, pp. 559.CrossRefGoogle Scholar
  34. 34.
    M. Natesan, G. Venkatachari, and N. Palaniswamy: Corrosion Science, 2006, vol. 48 (11), pp. 3584-3608.CrossRefGoogle Scholar
  35. 35.
    L. T. H. Lien, P. T. San, and H. L. Hong: Science and Technology of Advanced Materials, 2007, vol. 8 (7), pp. 552-558.CrossRefGoogle Scholar
  36. 36.
    H. Ambler: Journal of Applied Chemistry, 1960, vol. 10 (5), pp. 213-225.CrossRefGoogle Scholar
  37. 37.
    K. Slamova, and M. Koehl: Materials and Corrosion, 2017, vol. 68 (1), pp. 20-29.CrossRefGoogle Scholar
  38. 38.
    K. Kreislova and D. Knotkova: Materials, 2017, vol. 10, pp. 394.CrossRefGoogle Scholar
  39. 39.
    H.E. Townsend: Outdoor Atmospheric Corrosion (ASTM Special Technical Publication, STP 1421), ASTM, 2002, pp. 1–390.Google Scholar
  40. 40.
    G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, and J. Payer: Report No. NACE International IMPACT Report, Houston, 2016.Google Scholar
  41. 41.
    C.D. Bryan: The National Geographic Society, 100 Years of Adventure and Discovery, Abradale/Abrams, 2001, pp. 5–25.Google Scholar
  42. 42.
    K.K. Haftlang and K.K.H. Lang: The Book of Iran: A Survey of the Geography of Iran, Alhoda UK, 2003, pp. 70–100.Google Scholar
  43. 43.
    V. V. Barthold: An historical geography of Iran, Princeton University Press, Princeton, 2014, pp. 10-47.Google Scholar
  44. 44.
    M. H. Sowlat, K. Naddafi, M. Yunesian, P. L. Jackson, S. Lotfi, and A. Shahsavani: CLEAN–Soil, Air, Water, 2013, vol. 41 (12), pp. 1143-1151.CrossRefGoogle Scholar
  45. 45.
    S. Keshmiri, S. Pordel, A. Raeesi, I. Nabipour, H. Darabi, S. Jamali, S. Dobaradaran, G. Heidari, A. Ostovar, B. Ramavandi, R. Tahmasebi, M. Marzban, A. Khajeian, A. Sanati, and S. Farrokhi: Iranian South Medical Journal, 2018, vol. 21 (2), pp. 162-185.Google Scholar
  46. 46.
    S. Abdollahi, Z. Raoufi, I. Faghiri, A. Savari, Y. Nikpour, and A. Mansouri: Marine Pollution Bulletin, 2013, vol. 71 (1), pp. 336-45.CrossRefGoogle Scholar
  47. 47.
    B. Chico, D. de la Fuente, I. Díaz, J. Simancas, and M. Morcillo: Materials, 2017, vol. 10, pp. 601.CrossRefGoogle Scholar
  48. 48.
    D. Rezakhani, A.A. Fallah, M. Kahram, V. Araban, S.S. Jahromi-Yekta, and N. Agababazadeh: Report No. PMTPN19, Niroo Research Institute, Iran, Tehran, 2015.Google Scholar
  49. 49.
    ISO 9225: Measurement of Environmental Parameters Affecting Corrosivity of Atmospheres, International Organization for Standardization (ISO), 2012.Google Scholar
  50. 50.
    ASTM G50: Standard Practice for Conducting Atmospheric Corrosion Tests on Metals, American Society For Testing and Materials (ASTM), 2015.Google Scholar
  51. 51.
    V. Araban, M. Kahram, and D. Rezakhani: Corrosion Engineering, Science and Technology, 2016, vol. 51 (7), pp. 498-506.CrossRefGoogle Scholar
  52. 52.
    ISO 9226: Determination of Corrosion Rate of Standard Specimens for the Evaluation of Corrosivity of Atmospheres, International Organization for Standardization (ISO), 2012.Google Scholar
  53. 53.
    ASTM G1:Standard Practice for Preparing,Cleaning, and Evaluation CorrosionTest Specimens, American Society For Testing and Materials (ASTM), 1999.Google Scholar
  54. 54.
    J. M. Wallace, and P. V. Hobbs: 3 - Atmospheric Thermodynamics, In Atmospheric Science (Second Edition), Academic Press, San Diego, 2006, pp. 63-111.CrossRefGoogle Scholar
  55. 55.
    R. Vera, R. Araya, M. Bagnara, A. Díaz‐Gómez, and S. Ossandón: Materials and Corrosion, 2017, vol. 68 (3), pp. 316-328.CrossRefGoogle Scholar
  56. 56.
    J.C. Guerra, A. Castañeda, F. Corvo, J. J. Howland, and J. Rodríguez: Mater. Corros., 2018, pp. 1–17.Google Scholar
  57. 57.
    Z. Y. Chen, S. Zakipour, D. Persson, and C. Leygraf: Corrosion, 2004, vol. 60 (5), pp. 479-491.CrossRefGoogle Scholar
  58. 58.
    D. Delgado, and R. Vera: Int. J. Electrochem. Sci, 2013, vol. 8, pp. 7687-7701.Google Scholar
  59. 59.
    T. Graedel: Journal of the Electrochemical Society, 1989, vol. 136 (4), pp. 204C-212C.CrossRefGoogle Scholar
  60. 60.
    Z. Cui, F. Ge, X. Li, M. Zhu, K. Xiao, C. Dong, and X. Wang: Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, vol. 32 (3), pp. 633-639.CrossRefGoogle Scholar
  61. 61.
    R. Vera, D. Delgado, and B. M. Rosales: Corrosion Science, 2006, vol. 48 (10), pp. 2882-2900.CrossRefGoogle Scholar
  62. 62.
    T. Li, X. Li, C. Dong, and Y. Cheng: Journal of Materials Engineering and Performance, 2010, vol. 19 (4), pp. 591-598.CrossRefGoogle Scholar
  63. 63.
    C. Pan, W. Lv, Z. Wang, W. Su, C. Wang, and S. Liu: Journal of Materials Science & Technology, 2017, vol. 33 (6), pp. 587-595.CrossRefGoogle Scholar
  64. 64.
    X. Zhang, I. O. Wallinder, and C. Leygraf: Corrosion Science, 2014, vol. 85, pp. 15-25.CrossRefGoogle Scholar
  65. 65.
    T. Aastrup, M. Wadsak, C. Leygraf, and M. Schreiner: Journal of the Electrochemical Society, 2000, vol. 147 (7), pp. 2543-2551.CrossRefGoogle Scholar
  66. 66.
    Y. Waseda and S. Suzuki: in Advances in Materials Research, 1st ed., Springer, Berlin, 2006, pp. 1–308.Google Scholar
  67. 67.
    E. Sosa, R. Cabrera-Sierra, M. T. Oropeza, F. Hernández, N. Casillas, R. Tremont, C. Cabrera, and I. González: Electrochimica Acta, 2003, vol. 48 (12), pp. 1665-1674.CrossRefGoogle Scholar
  68. 68.
    J. G. Castaño, C. A. Botero, A. H. Restrepo, E. A. Agudelo, E. Correa, and F. Echeverría: Corrosion Science, 2010, vol. 52 (1), pp. 216-223.CrossRefGoogle Scholar
  69. 69.
    G. Tranchida, M. Clesi, F. Di Franco, F. Di Quarto, and M. Santamaria: Electrochimica Acta, 2018, vol. 273, pp. 412-423.CrossRefGoogle Scholar
  70. 70.
    D. De la Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo: Corrosion Science, 2011, vol. 53 (2), pp. 604-617.CrossRefGoogle Scholar
  71. 71.
    J. Alcántara, D. D. L. Fuente, B. Chico, J. Simancas, I. Díaz, and M. Morcillo: Materials, 2017, vol. 10, pp. 406.CrossRefGoogle Scholar
  72. 72.
    D. Persson, D. Thierry, and O. Karlsson: Corrosion Science, 2017, vol. 126, pp. 152-165.CrossRefGoogle Scholar
  73. 73.
    R. Vera, F. Guerrero, D. Delgado, and R. Araya: J. Braz. Chem. Soc, 2013, vol. 24, pp. 449-458.CrossRefGoogle Scholar
  74. 74.
    D. De la Fuente, J. Castano, and M. Morcillo: Corrosion science, 2007, vol. 49 (3), pp. 1420-36.CrossRefGoogle Scholar
  75. 75.
    E. Almeida, M. Morcillo, and B. Rosales: British Corrosion Journal, 2000, vol. 35 (4), pp. 289-296.CrossRefGoogle Scholar
  76. 76.
    F. E. Harrell: Regression modeling strategies, Springer, Cham, Switzerland, 2014, pp. 1-15.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Metallurgy DepartmentNiroo Research Institute (NRI)TehranIran

Personalised recommendations