Through Hole Aluminum Fabricated by the Extraction of Lubricated Metallic Wires

  • Hideo NakajimaEmail author


Through holes, which provide flow paths for coolants, are useful in the cooling panels of the turbine blades of airplane jet engines and the heat sinks of electronics devices in cars and computers. To date, through holes have been fabricated by the directional solidification of molten metals having dissolved hydrogen, the core-bar pulling method, the rod-dipping process, mechanical drilling, electron beam and laser ablation processing, and other processes. However, the fabricated holes are short and impractical. The aspect ratio of the length to the diameter of holes in aluminum is at most 10. Here we report through hole aluminum fabricated by extracting lubricated metallic wires embedded in a solidified aluminum melt. X-ray computed tomography showed that the through holes are very long with a maximum aspect ratio of 270. The hole sizes range from 102 to several 103 µm in diameter. Furthermore, the present technique can fabricate spiral and V-shaped holes in aluminum, a capability lacking in conventional perforation techniques. Thus, our methodology for producing through hole metals is expected to provide expanded opportunities for technologies such as heat sinks, turbines, biomaterials, and machine tools.



  1. 1.
    L.J. Gibson and M.F. Ashby: Cellular Solids, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1997.CrossRefGoogle Scholar
  2. 2.
    2. H. Nakajima: Progr.Mater.Sci. 2007, vol.52, pp.1091-1173.CrossRefGoogle Scholar
  3. 3.
    H. Nakajima: Porous Metals with Directional Pores, Springer, Tokyo, 2013.CrossRefGoogle Scholar
  4. 4.
    H. Nakajima, S.K. Hyun, K. Ohashi, K. Ota and K. Murakami: Colloids and Surface A: Physicochemical and Eng.Aspects, 2001, vol. 179, pp.209-214.CrossRefGoogle Scholar
  5. 5.
    V. Shapovalov: Mat.Res.Soc.Symp.Proc., 1998, vol.521, pp.281-290.CrossRefGoogle Scholar
  6. 6.
    H. Chiba, T. Ogushi and H. Nakajima: J.Thermal Sci.Tech., 2010, vol. 5, pp.222-237.CrossRefGoogle Scholar
  7. 7.
    J.S. Park, S.K. Hyun, S. Suzuki and H. Nakajima: Acta Mater., 2007, vol. 55, pp.5646-5654.CrossRefGoogle Scholar
  8. 8.
    T. Ide, Y. Iio and H. Nakajima: Metall Mater. Trans. A, 2012, vol. 43A, pp. 5140-5152.CrossRefGoogle Scholar
  9. 9.
    T. Haga and H. Fuse: Adv.Mater.Process.Tech., 2018, vol.4, pp.16-23.Google Scholar
  10. 10.
    10. D. Muto, T. Yoshida, T. Tamai, M. Sawada and S. Suzuki: Mater.Trans.,2019, vol.60, pp.544-553.CrossRefGoogle Scholar
  11. 11.
    Y. Goto:, 2017. Accessed 16 Feb 2019
  12. 12.
    D. Gillen and D. Moore:, 2012. Accessed 3 Jan 2019
  13. 13.
    P.E. Williams and A.D.L. Zouch: 1993. US patent 5222617.Google Scholar
  14. 14.
    Juntsu, Accessed 27 Jan 2019
  15. 15.
    P.G. Shewmon: Diffusion in Solids, McGraw-Hill, New York, United State, 1963, pp.117-122.Google Scholar
  16. 16.
    T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals, Oxford University Press, Oxford, United Kingdom, 1988, pp.199-225.Google Scholar
  17. 17.
    H. Mehrer: Diffusion in Solid Metals and Alloys, Springer-Verlag, Berlin, Heidelberg, New York, 1990.CrossRefGoogle Scholar
  18. 18.
    S.K. Hyun, K. Murakami and H. Nakajima: Mater.Sci.Eng.A, 2001, vol. A299, pp.241-248.CrossRefGoogle Scholar
  19. 19.
    S.K. Hyun and H. Nakajima: Mater.Sci.Eng.A, 2003, vol. A340, pp.258-264.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityIbarakiJapan
  2. 2.Institute for Lotus Materials Research, Ltd. Inc.KitakuJapan

Personalised recommendations