Advertisement

A Novel Multi-frequency Nonlinear Ultrasonic Approach for the Characterization of Annealed Polycrystalline Microstructure

  • Saju T. AbrahamEmail author
  • S. Shivaprasad
  • N. Sreevidya
  • C. R. Das
  • S. K. Albert
  • B. Venkatraman
  • Krishnan Balasubramaniam
Communication
  • 26 Downloads

Abstract

A multi-frequency nonlinear ultrasonic measurement is used to characterize grain size variations and distributions unambiguously. The ultrasonic nonlinearity parameter varies linearly with grain size in the Rayleigh scattering regime but deviates from linear behavior at the Rayleigh-to-stochastic transition zone. Frequency dependence of this parameter is found to be a reliable tool for rapid screening of materials where grain size varies widely.

Notes

References

  1. 1.
    X. Yuan, L. Chen, Y. Zhao, H. Di, and F. Zhu: Procedia Eng., 2014, vol. 81, pp. 143–8.CrossRefGoogle Scholar
  2. 2.
    Z. Keran, M. Mihaljević, B. Runje, and D. Markučič: Arch. Civ. Mech. Eng., 2017, vol. 17, pp. 375–81.CrossRefGoogle Scholar
  3. 3.
    M. Vasudevan and P. Palanichamy: J. Mater. Eng. Perform., 2002, vol. 11, pp. 169–79.CrossRefGoogle Scholar
  4. 4.
    P. Palanichamy, A. Joseph, T. Jayakumar, and B. Raj: NDT E Int., 1995, vol. 28, pp. 179–85.CrossRefGoogle Scholar
  5. 5.
    H. Du and J.A. Turner: Ultrasonics, 2014, vol. 54, pp. 882–7.CrossRefGoogle Scholar
  6. 6.
    T. Wan, T. Naoe, T. Wakui, M. Futakawa, H. Obayashi, and T. Sasa: Materials (Basel)., 2017, vol. 10, 753.CrossRefGoogle Scholar
  7. 7.
    X. Li, X. Han, A.P. Arguelles, Y. Song, and H. Hu: Ultrasonics, 2017, vol. 78, pp. 23–9.CrossRefGoogle Scholar
  8. 8.
    A. Kumar, K. Laha, T. Jayakumar, K.B.S. Rao, and B. Raj: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1617–26.CrossRefGoogle Scholar
  9. 9.
    L. Yang, O.I. Lobkis, and S.I. Rokhlin: Ultrasonics, 2011, vol. 51, pp. 697–708.CrossRefGoogle Scholar
  10. 10.
    E.P. Papadakis: J. Acoust. Soc. Am., 1965, vol. 37, p. 711–7.CrossRefGoogle Scholar
  11. 11.
    F. Dong, X. Wang, Q. Yang, H. Liu, D. Xu, Y. Sun, Y. Zhang, R. Xue, and S. Krishnaswamy: Scr. Mater., 2018, vol. 154, pp. 40–4.CrossRefGoogle Scholar
  12. 12.
    P.B. Nagy: Ultrasonics, 1998, vol. 36, pp. 375–81.CrossRefGoogle Scholar
  13. 13.
    L. Bjørnø: Ultrasonics, 2002, vol. 40, pp. 11–7.CrossRefGoogle Scholar
  14. 14.
    K.H. Matlack, J.-Y. Kim, L.J. Jacobs, and J. Qu: J. Nondestruct. Eval., 2015, vol. 34, 273.CrossRefGoogle Scholar
  15. 15.
    W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, pp. 275–89.CrossRefGoogle Scholar
  16. 16.
    A. Hikata and C. Elbaum: Phys. Rev., 1966, vol. 144, pp. 469–77.CrossRefGoogle Scholar
  17. 17.
    X. Gao and J. Qu: J. Appl. Phys., 2018, vol. 124, 125102.CrossRefGoogle Scholar
  18. 18.
    A. Hikata, B.B. Chick, and C. Elbaum: Appl. Phys. Lett., 1963, vol. 3, pp. 195–7.CrossRefGoogle Scholar
  19. 19.
    W.D. Cash and W. Cai: J. Appl. Phys., 2012, vol. 111, 074906.CrossRefGoogle Scholar
  20. 20.
    S.T. Abraham, S.K. Albert, C.R. Das, N. Parvathavarthini, B. Venkatraman, R.S. Mini, and K. Balasubramaniam: Acta Metall. Sin. English Lett., 2013, vol. 26, pp. 545–52.CrossRefGoogle Scholar
  21. 21.
    R.S. Mini, K. Balasubramaniam, and P. Ravindran: Exp. Mech., 2015, vol. 55, pp. 1023–30.CrossRefGoogle Scholar
  22. 22.
    E.P. Papadakis: J. Appl. Phys., 1963, vol. 34, pp. 265–9.CrossRefGoogle Scholar
  23. 23.
    H. Jeong, D. Barnard, S. Cho, S. Zhang, and X. Li: Ultrasonics, 2017, vol. 81, pp. 147–57.CrossRefGoogle Scholar
  24. 24.
    W. Li, B. Chen, X. Qing, Y. Cho, W. Li, B. Chen, X. Qing, and Y. Cho: Metals (Basel)., 2019, vol. 9, 271.CrossRefGoogle Scholar
  25. 25.
    S. Zhang, H. Jeong, S. Cho, and X. Li: AIP Adv., 2015, vol. 5, 077133.CrossRefGoogle Scholar
  26. 26.
    C. Núñez and S. Domingo: Metall. Trans. A, 1988, vol. 19, pp. 2937–44.CrossRefGoogle Scholar
  27. 27.
    Kundu: Ultrasonic Nondestructive Evaluation : Engineering and Biological Material Characterization. CRC Press, Boca Raton, 2004.Google Scholar
  28. 28.
    E.P. Papadakis: J. Acoust. Soc. Am., 1964, vol. 36, p. 1019.CrossRefGoogle Scholar
  29. 29.
    E.P. Papadakis: Int. Met. Rev., 1984, vol. 29, pp. 1–24.CrossRefGoogle Scholar
  30. 30.
    F.E. Stanke and G.S. Kino: J. Acoust. Soc. Am., 1984, vol. 75, p. 665–81.CrossRefGoogle Scholar
  31. 31.
    F. Zeng, S.R. Agnew, B. Raeisinia, and G.R. Myneni: J. Nondestruct. Eval., 2010, vol. 29, pp. 93–103.CrossRefGoogle Scholar
  32. 32.
    X. Bai, Y. Zhao, J. Ma, Y. Liu, and Q. Wang: Materials (Basel)., 2018, vol. 12, 102.CrossRefGoogle Scholar
  33. 33.
    A.P. Arguelles and J.A. Turner: J. Acoust. Soc. Am., 2017, vol. 141, pp. 4347–53.CrossRefGoogle Scholar
  34. 34.
    E.P. Papadakis: J. Appl. Phys., 1964, vol. 35, pp. 1586–94.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Saju T. Abraham
    • 1
    Email author
  • S. Shivaprasad
    • 2
  • N. Sreevidya
    • 1
  • C. R. Das
    • 1
  • S. K. Albert
    • 1
  • B. Venkatraman
    • 1
  • Krishnan Balasubramaniam
    • 2
  1. 1.Homi Bhabha National InstituteIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Centre for Non-destructive EvaluationIndian Institute of TechnologyChennaiIndia

Personalised recommendations