Advertisement

Effect of Thickness on the Thermal Conductivity and Microstructure of Die-Cast AZ91D Magnesium Alloy

  • Yue Ming
  • Guoqiang YouEmail author
  • Xuanxi Xu
  • Hengyu Wen
  • Jianhua Zhao
Article
  • 8 Downloads

Abstract

Magnesium alloys have many excellent properties and possess wide industrial application prospects. Sheets of AZ91D magnesium alloy with different thicknesses were produced by the die-cast process, and the cooling rates lay between 3.77 and 29.27 °C s−1 with the thickness ranging from 1.5 to 6 mm. With the increasing thickness, the grain size increased, and the concentration of Al solute atoms in Mg matrix decreased. The second phases transformed from homogeneous fine particles and short strips at 1.5 mm to a network at 6 mm. These changes can be attributed to the cooling rate. The thermal conductivity was found to increase with the increasing thickness at the same temperature, and to increase with the increasing temperature at the same thickness. The minimum thermal conductivity (45.19 W (m K)−1), and the maximum thermal conductivity (89.32 W (m K)−1) were obtained at a thickness of 1.5 mm at 25 °C and a thickness of 6 mm at 150 °C, respectively. The grain size increased, and the Al solute atoms in Mg matrix decreased with the increasing thickness, which reduced the lattice irregularity and scattering of electrons and phonons, and resulted in an increase in the thermal conductivity.

Notes

Acknowledgments

This research is supported by the key project of the National Key Research and Development Program of China (No. 2016YFB0301100) and the Entrepreneurship & Innovation Program for Chongqing Overseas Returned Scholars (No. CX2017075).

References

  1. 1.
    M.M. Avedesian and H. Baker: ASM Specialty Handbook: Magnesium and Magnesium alloys. ASM international. Materials Park, 1999.Google Scholar
  2. 2.
    X. Tong, G. Q. You, Y. H. Ding, H. S. Xue, Y. C. Wang, and W. Guo: Mater. Lett., 2018, vol. 229, 261-264.CrossRefGoogle Scholar
  3. 3.
    L. P. Zhong, J. Peng, S. Sun, Y. J. Wang, Y. Lu, and F. S. Pan: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1240–1248.CrossRefGoogle Scholar
  4. 4.
    M. K. Kulekci: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol., 2008, vol. 39, pp. 851-865.CrossRefGoogle Scholar
  5. 5.
    C. Y. Su, D. J. Li, A. A. Luo, R. H. Shi, and X. Q. Zeng: Metall. Mater. Trans. A.,2019, vol.50, pp 1970–1984.CrossRefGoogle Scholar
  6. 6.
    T. Ying, M.Y. Zheng, Z.T. Li, X.G. Qiao, and S.W. Xu: J. Alloys Compd., 2015, vol. 621, pp. 250-255.CrossRefGoogle Scholar
  7. 7.
    C. Y. Su, D. J. Li, T. Ying, L. P. Zhou, L. Li, and X. Q. Zeng: J. Alloys Compd., 2016, vol. 685, pp. 114-121.CrossRefGoogle Scholar
  8. 8.
    J. Peng, L. P. Zhong, Y. J. Wang, Y. Lu, and F. S. Pan: Mater. Des., 2015, vol. 87, pp. 914-919.CrossRefGoogle Scholar
  9. 9.
    K.C. Mills: Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, Cambridge, 2002, p. 143.CrossRefGoogle Scholar
  10. 10.
    Y. S. Touloukian, R. W. Powell, C.Y. Ho, and P. G. Klemens: Thermophysical properties of matter: Thermal conductivity; metallic elements and alloys. Plenum, New York, 1970, pp. 658–660.Google Scholar
  11. 11.
    G. Q. You, Y. Ming, P. Yan, X. L. Ma, and B. H. Tong: Rare Metal Mat. Eng., 2018, vol. 47, pp. 2393-2403.Google Scholar
  12. 12.
    Z. Q. Cui and Y. C. Tan: Metallurgy and Heat Treatment, 2nd ed. Harbin: Harbin Institute of Technology Press, 2012, pp. 39.Google Scholar
  13. 13.
    R. Berman: Thermal Conduction in Solids. Oxford: Clarendon Press, 1976.Google Scholar
  14. 14.
    J. W. Yuan, K. Zhang, X. H. Zhang, X. G. Li, T. Li, Y. J. Li, M. L. Ma, and G. L. Shi: J. Alloys Compd., 2013, vol. 47, pp. 32-36.CrossRefGoogle Scholar
  15. 15.
    T. Ying, H. Chi, M. Y. Zheng, Z. T. Li, and C. Uher: Acta Mater. 2014, vol. 80, pp. 288-295.CrossRefGoogle Scholar
  16. 16.
    U.F. Kocks: Metall. Trans. A, 1985, vol. 16, PP. 2109–2129.CrossRefGoogle Scholar
  17. 17.
    A. R. Eivani, H. Ahmed, J. Zhou, and J. Duszczyk: Metall. Mater. Trans. A., 2009, vol. 40, pp. 2435-2446.CrossRefGoogle Scholar
  18. 18.
    C. Y. Su, D. J. Li, A. A. Luo, T. Ying, and X. Q. Zeng: J. Alloys Compd., 2018, vol. 747, pp. 431-437.CrossRefGoogle Scholar
  19. 19.
    P. Sharifi, Y. Fan, H. B. Anaraki, A. Banerjee, K. Sadayappan, and J. T. Wood: Metall. Mater. Trans. A.. 2016, vol. 47, pp 5159–5168.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Yue Ming
    • 1
  • Guoqiang You
    • 1
    • 2
    Email author
  • Xuanxi Xu
    • 1
  • Hengyu Wen
    • 1
  • Jianhua Zhao
    • 1
    • 2
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.National Engineering Research Center for Magnesium AlloysChongqing UniversityChongqingChina

Personalised recommendations