Understanding the Role of Copper Addition in Low-Temperature Toughness of Low-Carbon, High-Strength Steel

  • Xiaohui Xi
  • Jinliang Wang
  • Liqing ChenEmail author
  • Zhaodong Wang


In this work, the effect of Cu addition on the microstructure and mechanical properties, in particular, low-temperature toughness, of low-carbon, high-strength steel was investigated. Steels with Cu concentrations varying from 1 to 2.5 wt pct in the place of carbon were prepared and then subjected to the two-step intercritical heat treatment. A mixed microstructure consisting of intercritical ferrite, tempered martensite, and retained austenite was obtained. There was an increased amount of retained austenite in the steels with Cu contents ranging from 0.23 to 2.5 wt pct. Therefore, Cu addition was beneficial for the stabilization of retained austenite. This phenomenon can be attributed to the enrichment of Cu in austenite and the increased driving force of reversed transformation caused by reduction in the T0 temperature (the temperature at which fcc austenite and bcc ferrite of identical composition have equal free energy). Furthermore, nanoscaled Cu precipitates were dispersed in the microstructure of Cu-containing steels. The combined effect of retained austenite and Cu precipitates could be the reason for excellent low-temperature toughness without loss in strength, which is featured by the impact energy of more than 120 J at 153 K (– 120 °C) for the Cu-containing steels. In addition to the deformation-induced transformation of retained austenite, bcc Cu precipitates act as misfit centers to improve the low-temperature toughness by enhancing the dislocation mobility and decreasing the ductile-to-brittle transformation temperature (DBTT).



This work is financially supported by the National Key Research and Development Program of China (13th Five-Year Plan) under Contract No. 2016YFB0300601.


  1. 1.
    S.W. Thompson: Mater. Sci. Eng. A, 2018, vol. 711, pp. 424–33.CrossRefGoogle Scholar
  2. 2.
    T. Montemarano, B. Sack, and J. Gudas: J. Ship Prod. Des., 1986, vol. 2, p. 18.Google Scholar
  3. 3.
    S. Vaynman, D. Isheim, R. Prakash-Kolli, S.P. Bhat, D.N. Seidman, and M.E. Fine: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 363–73.CrossRefGoogle Scholar
  4. 4.
    G. Han, Z.J. Xie, L. Xiong, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2017, vol. 705, pp. 89–97.CrossRefGoogle Scholar
  5. 5.
    X.H. Yu, J.L. Caron, S.S. Babu, J.C. Lippold, D. Isheim, and D.N. Seidman: Acta Mater., 2010, vol. 58, pp. 5596–5609.CrossRefGoogle Scholar
  6. 6.
    Y.U. Heo, Y.K. Kim, J.S. Kim, and J.K. Kim: Acta Mater., 2013, vol. 61, pp. 519–28.CrossRefGoogle Scholar
  7. 7.
    Y.X. Zheng, F.M. Wang, C.R. Li, Y.L. Li, and J. Cheng: Mater. Sci. Eng. A, 2018, vol. 712, pp. 453–65.CrossRefGoogle Scholar
  8. 8.
    S.K. Ghosh, A. Haldar, and P.P. Chattopadhyay: J. Mater. Sci., 2008, vol. 44, pp. 580–90.CrossRefGoogle Scholar
  9. 9.
    K. Kunishige, T. Hashimoto, and T. Yukitoshi: Tetsu-to-Hagané, 1980, vol. 66, pp. 63–72.CrossRefGoogle Scholar
  10. 10.
    K. Nakashima, Y. Futamura, T. Tsuchiyama, and S. Takaki: ISIJ Int., 2002, vol. 42, pp. 1541–45.CrossRefGoogle Scholar
  11. 11.
    K. Nakashima, K. Imakawa, Y. Futamura, T. Tsuchiyama, and S. Takaki. Mater. Sci. Forum, 2004, vol. 467, pp. 905–10.CrossRefGoogle Scholar
  12. 12.
    J.-Y. Kang, Y.-U. Heo, H. Kim, D.-W. Suh, D. Son, D.H. Lee, and T.-H. Lee: Mater. Sci. Eng. A, 2014, vol. 614, pp. 36–44.CrossRefGoogle Scholar
  13. 13.
    J. Weertman: J Appl. Phys., 1958, vol. 29, p. 1685.CrossRefGoogle Scholar
  14. 14.
    M. Fine, S. Vaynman, D. Isheim, Y. Chung, S. Bhat, and C. Hahin: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3318–25.CrossRefGoogle Scholar
  15. 15.
    R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.CrossRefGoogle Scholar
  16. 16.
    N. Nakada, J. Syarif, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2004, vol. 374, pp. 137–44.CrossRefGoogle Scholar
  17. 17.
    Z.B. Jiao, J.H. Luan, M.K. Miller, and C.T. Liu: Acta Mater., 2015, vol. 97, pp. 58–67.CrossRefGoogle Scholar
  18. 18.
    K. Sugimoto, N. Usui, M. Kobayashi, and S. Hashimoto: ISIJ Int., 1992, vol. 32, pp. 1311–18.CrossRefGoogle Scholar
  19. 19.
    R.D.K. Misra, Z. Jia, R. O’Malley, and S.J. Jansto: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8772–80.CrossRefGoogle Scholar
  20. 20.
    W.H. Zhou, H. Guo, Z.J. Xie, C.J. Shang, and R.D.K. Misra: Mater. Des., 2014, vol. 63, pp. 42–49.CrossRefGoogle Scholar
  21. 21.
    W.H. Zhou, H. Guo, Z.J. Xie, X.M. Wang, and C.J. Shang: Mater. Sci. Eng. A, 2013, vol. 587, pp. 365–71.CrossRefGoogle Scholar
  22. 22.
    Z.J. Xie, G. Han, W.H. Zhou, C.Y. Zeng, and C.J. Shang: Mater. Charact., 2016, vol. 113, pp. 60–66.CrossRefGoogle Scholar
  23. 23.
    G. Salje and M. Feller-Kniepmeier: J. Appl. Phys., 1977, vol. 48, pp. 1833–39.CrossRefGoogle Scholar
  24. 24.
    P. Cheng, B. Hu, S.L. Liu, H. Guo, M. Enomoto, and C.J. Shang: Mater. Sci. Eng. A, 2019, vol. 746, pp. 41–49.CrossRefGoogle Scholar
  25. 25.
    C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, and H. Dong: Scripta Mater., 2008, vol. 58, pp. 492–95.CrossRefGoogle Scholar
  26. 26.
    H.M. Flower and T.C. Lindley: Mater. Sci. Technol., 2013, vol. 16, pp. 26–40.Google Scholar
  27. 27.
    Z.J. Xie, Y.Q. Ren, W.H. Zhou, J.R. Yang, C.J. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 603, pp. 69–75.CrossRefGoogle Scholar
  28. 28.
    D.P. Yang, D. Wu, and H.L. Yi: Scripta Mater., 2019, vol. 161, pp. 1–5.CrossRefGoogle Scholar
  29. 29.
    E. Rasanen: Scand. J. Metall., 1973, vol. 2, pp. 257–64.Google Scholar
  30. 30.
    A.R.H. Far, S.H.M. Anijdan, and S.M. Abbasi: Mater. Sci. Eng. A, 2019, vol. 746, pp. 384–93.CrossRefGoogle Scholar
  31. 31.
    X.H. Xi, J.L. Wang, X. Li, L.Q. Chen, and Z.D. Wang: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 2912–21.CrossRefGoogle Scholar
  32. 32.
    J. Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong, and W.Q. Cao: Scripta Mater., 2010, vol. 63, pp. 815–18.CrossRefGoogle Scholar
  33. 33.
    T.L. Skoufari, D.N. Crowther, and B. Mintz: Mater. Sci. Technol., 1999, vol. 15, pp. 1069–79.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Xiaohui Xi
    • 1
  • Jinliang Wang
    • 1
  • Liqing Chen
    • 1
    Email author
  • Zhaodong Wang
    • 1
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangP.R. China

Personalised recommendations