Advertisement

Atomic Redistribution in a Fe-Cr System in the Course of Mechanical Alloying and Subsequent Annealing

  • Vitaly E. PorsevEmail author
  • Alexander L. Ulyanov
  • Gennady A. Dorofeev
Article
  • 1 Downloads

Abstract

Evolution of the structure and atomic distribution in Fe1−xCrx (x = 0.2, 0.3, 0.4 and 0.48) samples in the course of Fe and Cr elemental powder mechanical alloying (MA), as well as during the subsequent isochronous (4 hours) annealing in the 400 °C to 700 °C temperature range, has been studied using 57Fe Mössbauer spectrometry and X-ray diffraction with a focus on the short-range order (SRO). It was established that MA proceeds in one stage for x ≤ 0.3 or three consecutive stages for x > 0.3. The single-stage process is characterized by preferential penetration of Cr into the Fe matrix, while the three-stage process comprises diffusion of Cr into Fe as in the previous case, formation of Cr- and Fe-rich areas, and formation of homogeneous α-Fe(Cr) solid solution. The change in the MA mechanism occurs as Fe is saturated with Cr and is caused by the inversion of the mixing energy sign from negative to positive. For all samples with x ≤ 0.3 annealed at all temperatures and for x > 0.3 annealed at 400 °C, only a small trend toward SRO was observed (SRO parameter < 0). The samples with x > 0.3 annealed at temperatures > 400 °C are subjected to thermally induced decomposition, which is accompanied by chromium segregations to the grain boundaries.

Notes

Acknowledgments

The work has been carried out within the framework of the Ministry of Science and Higher Education of the Russian Federation (Project No. AAAA-A17-117022250038-7) using equipment of the Shared Use Centre “Centre of Physical and Physicochemical Methods of Analysis and Study of the Properties and Surface Characteristics of Nanostructures, Materials, and Products” UdmFRC UB RAS and partially supported by the UB RAS program (Project No. 18-10-2-21).

References

  1. 1.
    R.L. Klueh and D.R. Harries: ASTM Stock Number: MONO3, 2001.Google Scholar
  2. 2.
    W. Xiong, M. Selleby, Q. Chen, J. Odqvist, Y. Du: Crit. Rev. Solid State Mater. Sci., 2010, vol. 35 pp. 125–52. 10.1080/10408431003788472.CrossRefGoogle Scholar
  3. 3.
    L. Malerba, A. Caro, J. Wallenius: J. Nucl. Mater., 2008, vol. 382, pp. 112–25.  https://doi.org/10.1016/j.jnucmat.2008.08.014.CrossRefGoogle Scholar
  4. 4.
    I. Mirebeau, M. Hennion, G. Parette: Phys. Rev. Lett., 1984, vol. 53, pp. 687-90. 10.1103/PhysRevLett.53.687.CrossRefGoogle Scholar
  5. 5.
    I. Mirebeau, G. Parette: Phys. Rev. B, 2010, vol. 82 pp. 104203-1–5. 10.1103/PhysRevB.82.104203.CrossRefGoogle Scholar
  6. 6.
    A. Froideval, R. Iglesias, M. Samaras, S. Schhuppler, P. Nagel, D. Grolimund, M. Victoria, W. Hoffelner: Phys. Rev. Lett., 2007, vol. 99, pp. 237201-1–4.  https://doi.org/10.1103/physrevlett.99.237201.CrossRefGoogle Scholar
  7. 7.
    N.P. Filippova, V.A. Shabashov, A.L. Nikolaev: Phys. Met. Metallogr., 2000, vol. 90, pp. 145-152.Google Scholar
  8. 8.
    M.Yu. Lavrentiev, R. Drautz, D. Nguyen-Manh, T.P.C. Klaver, S.L. Dudarev: Phys. Rev. B., 2007, vol. 75, 014208-1–12. 10.1103/PhysRevB.75.014208.CrossRefGoogle Scholar
  9. 9.
    G. Bonny, R.C. Pasianot, L. Malerba, A. Caro, P. Olsson, M.Yu. Lavrentiev: J. Nucl. Mater., 2009, vol. 385 pp. 268-77. 10.1016/j.jnucmat.2008.12.001CrossRefGoogle Scholar
  10. 10.
    G. Bonny, D. Terentiev, L. Malerba: J. Phase Equilib. Diff., 2010, vol. 31, pp. 439-44. 10.1007/s11669-010-9782-9CrossRefGoogle Scholar
  11. 11.
    G. Bonny, R.C. Pasianot, D. Terentyev, L. Malerba: Phil. Mag., 2011, vol. 91, pp. 1724–46. 10.1080/14786435.2010.545780.CrossRefGoogle Scholar
  12. 12.
    R. Idczak, R. Konieczny, J. Chojcan: J. Phys Chem. Solids, 2012, vol. 73 pp. 1095-98. 10.1016/j.jpcs.2012.05.010.CrossRefGoogle Scholar
  13. 13.
    S.M. Dubiel, J. Zukrowski: Acta Mater., 2013, vol. 61, pp. 6207-12. 10.1016/j.actamat.2013.07.003.CrossRefGoogle Scholar
  14. 14.
    S. M. Dubiel, J. Cieslak: Phys. Rev. B, 2011, vol. 83, pp. 180202-1–4. 10.1103/PhysRevB.83.180202.CrossRefGoogle Scholar
  15. 15.
    T. Koyano, T. Takizawa, T. Fukunaya, U. Mizutani, S. Kamizura, E. Kita, A. Tasaki: J. Appl. Phys., 1993, vol. 73, pp. 429-33. 10.1063/1.353867.CrossRefGoogle Scholar
  16. 16.
    T. Koyano, U. Mizutani, H. Okamoto: J. Mater. Sci. Lett., 1995, vol. 14, pp. 1237-40. 10.1007/BF00291817.CrossRefGoogle Scholar
  17. 17.
    M. Murugesan, H. Kuwano: IEEE Trans. Magn., 1999, vol. 35, pp. 3499-3501. 10.1109/20.800569.CrossRefGoogle Scholar
  18. 18.
    A. Fnidiki, C. Lemoine, J. Teilet, M. Nogues: Physica B, 2005, vol. 363, pp. 271-81. 10.1016/j.physb.2005.03.036.CrossRefGoogle Scholar
  19. 19.
    F.Z. Bentayeb, S. Alleg, B. Bouzabata, J.M. Greneche: JMMM, 2005, vol. 288, pp. 282-96. 10.1016/j.jmmm.2004.09.108.CrossRefGoogle Scholar
  20. 20.
    A. Fnidiki, C. Lemoine, J. Teilet: Physica B, 2005, vol. 357, pp. 319-25. 10.1016/j.physb.2004.11.083.CrossRefGoogle Scholar
  21. 21.
    P. Delcroix, G. Le Caër, B.F.O. Costa: J. Alloys Compd., 2007, vol. 434-435, pp. 584-86. 10.1016/j.jallcom.2006.08.085.CrossRefGoogle Scholar
  22. 22.
    B. Pandey, M.A. Rao, H.C. Verma, S. Bhargava: Hyperfine Interact., 2006, vol. 169, pp. 1259-66. 10.1007/s10751-006-9434-y.CrossRefGoogle Scholar
  23. 23.
    E.P. Yelsukov, D.A. Kolodkin, A.L. Ul’yanov, and V.E. Porsev: Colloid J., 2015, vol. 77, pp. 143–53.  https://doi.org/10.1134/s1061933x15020076.CrossRefGoogle Scholar
  24. 24.
    E.P. Elsukov, A.L. Ul’yanov, V.E. Porsev, D.A. Kolodkin, A.V. Zagainov, O.M. Nemtsova: Phys Met. Metallogr., 2018, vol. 119, pp. 153–60. 10.1134/S0031918X18030031.CrossRefGoogle Scholar
  25. 25.
    E. P. Elsukov, A. L. Ulyanov, and V. E. Porsev: Bull. Russ Acad. Sci. Phys., 2017, vol. 81, pp. 867–70. 10.3103/S1062873817070097.CrossRefGoogle Scholar
  26. 26.
    E.P. Yelsukov, A.L. Ul’yanov, D.A. Kolodkin, and V.E. Porsev: Colloid J., 2016, vol. 78, pp. 443–47.  https://doi.org/10.1134/s1061933x16040049.CrossRefGoogle Scholar
  27. 27.
    M. Ames, J. Markmann, R. Karos, A. Michels, A. Tschöpe, R. Birringer: Acta Mater., 2008, vol. 56, pp. 4255-66. 10.1016/j.actamat.2008.04.051.CrossRefGoogle Scholar
  28. 28.
    R. Kirchheim: Acta Mater., 2002, vol. 50, pp. 413–19. 10.1016/S1359-6454(01)00338-X.CrossRefGoogle Scholar
  29. 29.
    G.A. Dorofeev, A.N. Streletskii, I.V. Povstugar, A.V. Protasov, E.P. Elsukov: Colloid J., 2012, vol. 74, pp. 675–85. 10.1134/S1061933X12060051.CrossRefGoogle Scholar
  30. 30.
    V.V. Ovchinnikov: Mössbauer Analysis of the Atomic and Magnetic Structure of Alloys. Cambridge International Science Publication Ltd., London, 2006.Google Scholar
  31. 31.
    E.V. Voronina, N.V. Ershov, A.L. Ageev, Yu.A. Babanov: Phys. Stat. Sol. B, 1990, vol. 160, pp. 625-34. 10.1002/pssb.2221600223.CrossRefGoogle Scholar
  32. 32.
    G.K. Rane, U. Welzel, S.R. Meka, E.J. Mittemeijer: Acta Mater., 2013, vol. 61, pp. 4524-33. 10.1016/j.actamat.2013.04.021CrossRefGoogle Scholar
  33. 33.
    Y.-L. Chen, Y.-H. Hu, C.-A. Hsieh, J.-W. Yeh, S.-K. Chen: J. Alloys Compd., 2009, vol. 481, pp. 768–75. 10.1016/j.jallcom.2009.03.087.CrossRefGoogle Scholar
  34. 34.
    C. Suryanarayana: Mechanical Alloying and Milling, Marcel Dekker Inc., New York, 2004,  https://doi.org/10.1201/9780203020647.
  35. 35.
    P.J. Schilling, V. Palshin, R. C. Tittsworth, J. H. He, and E. Ma: Phys. Rev. B, 2003, vol. 68, pp. 224204-1–5. 10.1103/PhysRevB.68.224204CrossRefGoogle Scholar
  36. 36.
    E. Ma: Prog. Mater. Sci., 2005, vol. 50, pp. 413–509.  https://doi.org/10.1016/j.pmatsci.2004.07.001.CrossRefGoogle Scholar
  37. 37.
    B.F.O. Costa, G. Le Caër, J.M. Loureiro, V.S. Amaral: J. Alloys Compd., 2006, vol. 424, pp. 131–140.  https://doi.org/10.1016/j.jallcom.2005.12.070.CrossRefGoogle Scholar
  38. 38.
    B.F.O. Costa, G. Le Caër, J.M. Loureiro: J. Alloys Compd., 2009, vol. 483, pp. 70–73.  https://doi.org/10.1016/j.jallcom.2008.07.179 CrossRefGoogle Scholar
  39. 39.
    G.Y. Vélez and G.A. Pérez Alcázar: J. Alloys Compd., 2015, vol. 644, pp. 1009–12. http://dx.doi.org/10.1016/j.jallcom.2015.05.004.
  40. 40.
    G.K. Wertheim, V. Jaccarino, J.H. Wernick, D.N.E. Buchanan: Phys. Rev. Lett., 1964, vol. 12, pp. 24-27.  https://doi.org/10.1103/physrevlett.12.24.CrossRefGoogle Scholar
  41. 41.
    H. Kuwano, Y. Ishikawa, T. Yoshimura, Y. Hamaguchi: Hyperfine Interact., 1992, vol. 69, pp. 501-504. 10.1007/BF02401874.CrossRefGoogle Scholar
  42. 42.
    H. Kuwano, Y. Nakamura, K. Ito, T. Yamada: Nuovo Cimento D, 1996, vol. 18, pp. 259-62. 10.1007/BF02458901.CrossRefGoogle Scholar
  43. 43.
    J. Cieslak, S.M. Dubiel: J. Alloys Compd., 1998, vol. 269, pp. 208–18. 10.1016/S0925-8388(98)00258-8.CrossRefGoogle Scholar
  44. 44.
    G.K. Wertheim: Mössbauer Effect: Principles and Application, Academic Press, New York, 1964.Google Scholar
  45. 45.
    L. Trieb, G. Veith: Acta Metallurg., 1978, vol. 26, pp. 185-96.CrossRefGoogle Scholar
  46. 46.
    L.R. Owen, H.Y. Playford, H.J. Stone, M.G. Tucker: Acta Mater., 2016, vol. 115, pp. 155-66.CrossRefGoogle Scholar
  47. 47.
    J.M. Cowley: J. Appl. Phys., 1950, vol. 21, pp. 24-30. 10.1063/1.1699415.CrossRefGoogle Scholar
  48. 48.
    J.M. Cowley: Phys. Rev., 1950, vol. 77, pp. 669-75.  https://doi.org/10.1103/physrev.77.669.CrossRefGoogle Scholar
  49. 49.
    O. Brümmer, G. Dräger, I. Mistol: Ann. Phys., 1972, vol. 28, pp. 135-40. 10.1002/andp.19724830205.CrossRefGoogle Scholar
  50. 50.
    E.R. Reese, M. Bachhav, P. Wells, T. Yamamoto, G.R. Odette, E.A. Marquis: J. Nucl. Mater., 2018, vol. 500, pp. 192-98. 10.1016/j.jnucmat.2017.12.036.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Vitaly E. Porsev
    • 1
    Email author
  • Alexander L. Ulyanov
    • 1
  • Gennady A. Dorofeev
    • 1
  1. 1.Udmurt Federal Research Center UB RASIzhevskRussia

Personalised recommendations