Advertisement

Hydrogen Desorption Spectra from Excess Vacancy-Type Defects Enhanced by Hydrogen in Tempered Martensitic Steel Showing Quasi-cleavage Fracture

  • Kei Saito
  • Tetsuya Hirade
  • Kenichi TakaiEmail author
Article
  • 8 Downloads

Abstract

An attempt was made to separate and identify hydrogen peaks desorbed from plastic-strained, hydrogen-enhanced lattice defects from among various trapping sites in tempered martensitic steel showing quasi-cleavage fracture using thermal desorption spectroscopy from a low temperature (L-TDS) and positron annihilation spectroscopy (PAS). The amount of the lattice defects beneath the quasi-cleavage fracture surface was measured by L-TDS. The L-TDS results made it possible to separate two peaks, namely that of the original desorption and also that of new desorption from the steel specimens due to the application of plastic strain in the presence of hydrogen. The PAS results revealed that the new desorption obtained by L-TDS corresponded to vacancy-type defects. Hydrogen and plastic strain noticeably enhanced lattice defects formed within 1.5 mm from the fracture surface, where the average concentration of vacancy-type defects reached approximately 10−5 order in terms of atomic ratio. These results indicate that the accumulation of excess vacancy-type defects enhanced by hydrogen in the local region can lead to nanovoid nucleation and coalescence in plastic deformation, resulting in quasi-cleavage fracture of tempered martensitic steel.

Notes

References

  1. 1.
    W.W. Gerberich and Y.T. Chen: Metall. Mater. Trans. A, 1975, vol. 6A, pp. 271-78.CrossRefGoogle Scholar
  2. 2.
    J. P. Hirth: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 861-90.CrossRefGoogle Scholar
  3. 3.
    H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191-202.CrossRefGoogle Scholar
  4. 4.
    I.M. Robertson and H.K. Birnbaum: Acta Mater., 1986, vol. 34, pp. 353-66.CrossRefGoogle Scholar
  5. 5.
    M. L. Martin, M. Dadfarnia, A. Nagao, S. Wang, and P. Sofronis: Acta Mater., 2019, vol. 165, pp. 734-50.CrossRefGoogle Scholar
  6. 6.
    M. Nagumo, M. Nakamura, and K. Takai: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 339-47.CrossRefGoogle Scholar
  7. 7.
    M. Nagumo: Mater. Sci. Technol., 2004, vol. 20, pp. 940-50.CrossRefGoogle Scholar
  8. 8.
    M. Nagumo and K. Takai: Acta Mater., 2019, vol. 165, pp. 722-33.CrossRefGoogle Scholar
  9. 9.
    Y. Matsumoto, K. Takai, M. Ichiba, T. Suzuki, T. Okamura, and S. Mizoguchi: ISIJ Int., 2013, vol. 53, pp. 714-22.CrossRefGoogle Scholar
  10. 10.
    Y. Matsumoto and K. Takai: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 490-97.CrossRefGoogle Scholar
  11. 11.
    T. Doshida, H. Suzuki, K. Takai, N. Oshima, and T. Hirade: ISIJ Int., 2012, vol. 52, pp. 198-207.CrossRefGoogle Scholar
  12. 12.
    A. Nagao, C. D. Smith, M. Dadfarnia, P. Sofronis, and I. M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182-89.CrossRefGoogle Scholar
  13. 13.
    Y. Matsumoto and K. Takai: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 666-77.CrossRefGoogle Scholar
  14. 14.
    M. Hattori, H. Suzuki, Y. Seko, and K. Takai: JOM, 2017, vol. 69, pp.1375-80.CrossRefGoogle Scholar
  15. 15.
    K. Takai, H. Shoda, H. Suzuki, and M. Nagumo: Acta Mater., 2008, vol. 56, pp. 5158-67.CrossRefGoogle Scholar
  16. 16.
    N. Abe, H. Suzuki, K. Takai, N. Ishikawa, and H. Sueyoshi: Materials Science and Technology Conference and Exhibition 2011, 2011, MS & T’11, pp. 1277–84.Google Scholar
  17. 17.
    T. Doshida and K. Takai: Acta Mater., 2014, vol. 79, pp. 93-107.CrossRefGoogle Scholar
  18. 18.
    P. Hautojärvi: Topics in Current Physics, Vol. 12, Springer, Berlin, 1979, pp. 1–23.Google Scholar
  19. 19.
    A. Vehanen, P. Hautojärvi, J. Johanson, J. Yli-Kauppila, and P. Moster: Phys. Rev. B, 1982, vol. 25, pp. 762-80.CrossRefGoogle Scholar
  20. 20.
    K. Sakaki, T. Kawase, M. Hirato, M. Mizuno, H. Araki, Y. Shirai, and M. Nagumo: Scr. Mater., 2006, vol. 55, pp. 1031-34.CrossRefGoogle Scholar
  21. 21.
    M. Hatano, M. Fujinami, K. Arai, H. Fujii, and M. Nagumo: Acta Mater., 2014, vol. 67, pp. 342-53.CrossRefGoogle Scholar
  22. 22.
    H. Saito, Y. Nagashima, T. Kuriharab, and T. Hyodo: Nucl. Instrum. Methods, 2002, vol. 487, pp. 612–17.CrossRefGoogle Scholar
  23. 23.
    P. Kirkegaard, J. V. Olsen, M. M. Eldrup, and N. J. Pedersen: PALSfit, A computer program for analysing positron lifetime spectra, Denmark. Forskningscenter Risoe. Risoe-R, no. 1652(EN), Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi, Roskilde, 2009.Google Scholar
  24. 24.
    M. Nagumo, K. Takai, and N. Okuda: J. Alloy. Compd., 1991, vol. 293-295, pp. 310-16.Google Scholar
  25. 25.
    R. A. Oriani: Acta Mater., 1970, vol.18, pp. 147-57.CrossRefGoogle Scholar
  26. 26.
    M.J. Puska and R.M. Nieminen: Rev. Mod. Phys., 1994, vol. 66, pp. 841-97.CrossRefGoogle Scholar
  27. 27.
    H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, and M. Kiritani: Mater. Sci. Eng. A, 2003, vol. 350, pp. 95-101.CrossRefGoogle Scholar
  28. 28.
    C. Hidalgo, G. Gonzalez-Doncel, S. Linderoth, and J. San Juan: Phys. Rev. B, 1992, vol. 13, pp. 7017-21.CrossRefGoogle Scholar
  29. 29.
    M. Yoshida, T. Asano, Y. Fujishiro, and Y. Shirai: Tetsu-to-Hagan, 2005, vol. 91, pp. 403-7.CrossRefGoogle Scholar
  30. 30.
    R. N. Gardner and H. G. F. Wilsdorf: Metall. Trans. A, 1980, vol. A11, pp. 659-69.CrossRefGoogle Scholar
  31. 31.
    S. M. Myers, S. T. Picraux, and R. E. Stoltz: Jpn. J. Appl. Phys., 1979, vol. 50, pp. 5710-19.CrossRefGoogle Scholar
  32. 32.
    S. M. Myers, D. M. Follsteaedt, F. Besenbacher, and J. Bottiger: Jpn. J. Appl. Phys., 1982, vol. 53, pp. 8734-44.CrossRefGoogle Scholar
  33. 33.
    U. Essmann and H. Mughrabi: Philos. Mag., 1979, vol. 40, pp. 731-56.CrossRefGoogle Scholar
  34. 34.
    A. M. Cuitino and M. Ortiz: Acta Mater., 1996, vol. 44, pp. 427-36.CrossRefGoogle Scholar
  35. 35.
    R. H. Van Stone, T.B. Cox, J.R. Low, and J.A. Psioda: Int. Mater. Rev., 1985, vol. 39, pp. 157-80.CrossRefGoogle Scholar
  36. 36.
    R. Kirchheim: Acta Mater., 2007, vol. 55, pp. 5129-38.CrossRefGoogle Scholar
  37. 37.
    R. Kirchheim: Acta Mater., 2007, vol. 55, pp. 5139-48.CrossRefGoogle Scholar
  38. 38.
    R. Matsumoto, N. Nishiguchi, S. Taketomi, and N. Miyazaki: J. Soc. Mater. Sci. Jpn., 2014, vol. 63, pp. 182-7.CrossRefGoogle Scholar
  39. 39.
    A. Shibata, H. Takahashi, and N. Tsuji: ISIJ Int., 2012, vol. 52, pp. 208-12.CrossRefGoogle Scholar
  40. 40.
    J. O.M. Bockris, W. Beck, M. A. Genshaw, P. K. Subramanyan, and F. S. Williams: Acta Mater., 1971, vol. 19, pp. 1209-18.CrossRefGoogle Scholar
  41. 41.
    Y. Tateyama and T. Ohno: Phys. Rev. B, 2003, vol. 67, pp. 174105-13.CrossRefGoogle Scholar
  42. 42.
    J. Takamura, I. Takahashi, and M. Amano: Trans. ISIJ., 1969, vol. 9, pp. 216-21.Google Scholar
  43. 43.
    A. Needleman and V. Tvergaard: J. Mechan. Phys. Solids, 1987, vol. 35, pp. 151-83.CrossRefGoogle Scholar
  44. 44.
    44 R. W. Cahn: Nature, 1978, vol. 273, pp. 491-2.CrossRefGoogle Scholar
  45. 45.
    T. Neeraj, R. Srinivasan and J. Li: Acta Mater., 2012, vol. 60, pp. 5160-71.CrossRefGoogle Scholar
  46. 46.
    M. Nagumo, T. Ishikawa, T. Endoh, and Y. Inoue: Scr. Mater., 2003, vol. 49, pp. 837-42.CrossRefGoogle Scholar
  47. 47.
    M Nagumo, H. Yoshida, Y. Shimomura, and T. Kadokura: Mater. Trans., 2001, vol. 42, pp. 132-7.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Graduate School of Science and TechnologySophia UniversityTokyoJapan
  2. 2.Nissan Motor Co., Ltd.KanagawaJapan
  3. 3.Nuclear Science and Engineering CenterJapan Atomic Energy AgencyIbarakiJapan
  4. 4.Department of Engineering and Applied Sciences, Faculty of Science and TechnologySophia UniversityTokyoJapan

Personalised recommendations