Compressive and Energy Absorption Behavior of Multilayered Foam Filled Tubes

  • M. Salehi
  • S. M. H. MirbagheriEmail author
  • M. Arabkohi


This article investigates the compressive and energy absorption characteristic of metallic foams and functionally graded foam (FGF) filled tubes containing single-, double-, and triple-layered foams. Closed-cell A356 alloy and pure zinc foams are fabricated by the casting method. The results indicate the preparation of A356 foam with larger bubbles and thinner cell walls and, thereby, lower density and compressive strength compared to the zinc foam. The metallic foams show partially brittle behavior associated with cell walls bending and tearing. The double-layered structures exhibit multiple compression behavior and two distinct plateau regions. The presence of high density zinc foam leads to decreasing the specific energy absorption (SEA) of graded structures. However, the compressive deformation and total energy absorption are significantly affected by the zinc foam. The crash performance of multilayered structures can be controlled by varying the number and material of layers at constant geometric features. The single-layered A356 and double-layered A356-Zn and Zn-A356 structures are considered as the best lightweight crashworthy structures with a combination of high SEA (15.3, 7.7, and 7.3 J/g) and low plateau force (10, 13, and 12 kN). Also, an asymptotic hardening model is developed for the porous metals based on the experimental results.



This work was supported by the Metal Foam Group of Amirkabir University (MFGAU) through Grant No. 110-mir-13951022. The authors are grateful to Rahyaft Advanced Sciences and Technologies Co. for their support in casting the metal foams.


  1. 1.
    A. Baroutaji, M. Sajjia, and A.-G. Olabi: Thin Walled Struct., 2017, vol. 118, pp. 137–63.CrossRefGoogle Scholar
  2. 2.
    A.G. Hanssen, M. Langseth, and O.S. Hopperstad: Int. J. Impact Eng., 2000, vol. 24, pp. 347–83.CrossRefGoogle Scholar
  3. 3.
    J. Bi, H. Fang, Q. Wang, and X. Ren: Fin. Elem. Anal. Des., 2010, vol. 46, pp. 698–709.CrossRefGoogle Scholar
  4. 4.
    M.G. Nava, A. Cruz-Ramirez, M.A.S Rosales, V.H. Gutirrez-Perez, A. Sanchez-Martinez: J. Alloys Compd., 2017, 698, 1009–1017.CrossRefGoogle Scholar
  5. 5.
    D.K. Rajak, L.A. Kumaraswamidhas, S. Das, and S. Senthil Kumaran: J. Alloys Compd., 2016, vol. 656, pp. 218–25.CrossRefGoogle Scholar
  6. 6.
    M.A. Islam, A.D. Brown, P.J. Hazell, M.A. Kader, J.P. Escobedo, M. Saadatfar, S. Xu, D. Ruan, and M. Turner: J. Alloys Compd., 2018, vol. 114, pp. 111–22.Google Scholar
  7. 7.
    N. Wang, E. Maire, Y. Cheng, Y. Amani, Y. Li, J. Adrien, and X. Chen: Mater. Charact., 2018, vol. 138, pp. 296–307.CrossRefGoogle Scholar
  8. 8.
    Manoj, D.M. Afzal K, Mondal DP: Mater. Sci. Eng. A, 2018, 731, 324–30.CrossRefGoogle Scholar
  9. 9.
    Y. Mu, G. Yao, L. Liang, H. Luo, and G. Zu: Scripta Mater., 2010, vol. 63, pp. 629–32.CrossRefGoogle Scholar
  10. 10.
    X. Liu, J. Zhang, Q. Fang, H. Wu, and Y. Zhang: Int. J. Impact Eng., 2016, vol. 110, pp. 382–94.CrossRefGoogle Scholar
  11. 11.
    A. Astaraie, H.R. Shahverdi, and S.H. Elahi: Trans. Nonferrous Met. Soc. China, 2014, 24, 162–69.Google Scholar
  12. 12.
    Pan L, Yang Y, Ahsan MU, Luong DD, Gupta N, Kumar A, Rohatgi PK (2018) Mater. Sci. Eng. A, 731:413–22.CrossRefGoogle Scholar
  13. 13.
    Y. Sirong, L. Jiaan, L. Yanru, and L. Yaohui: Mater. Sci. Eng. A, 2007, 457, 325–28.CrossRefGoogle Scholar
  14. 14.
    D.P. Mondal, M.D. Goel, N. Badge, N. Jha, S. Sahu, and A.K. Barnwal: Mater. Des., 2014, vol. 57, pp. 315–24.CrossRefGoogle Scholar
  15. 15.
    C.J. Zhang, Y. Feng, and X.B. Zhang: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 1380–86.CrossRefGoogle Scholar
  16. 16.
    M.D. Goel: Thin Walled Struct., 2015, vol. 90, pp. 1–11.CrossRefGoogle Scholar
  17. 17.
    Y. Hangai, K. Takahashi, T. Utsunomiya, S. Kitahara, O. Kuwazuru, N. Yoshikawa: Mater. Sci. Eng. A, 2012, 534, 716–19.CrossRefGoogle Scholar
  18. 18.
    Y. Hangai, T. Morita, and T. Utsunomiya: Mater. Sci. Eng. A, 2017, 696, 544–51.CrossRefGoogle Scholar
  19. 19.
    Y. Hangai, Y. Oba, S. Koyama, and T. Utsunomiya: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3585–89.CrossRefGoogle Scholar
  20. 20.
    Y. Hangai, H. Ikeda, K. Amagai, R. Suzuki, M. Matsubara, N. Yoshikawa: Metall. Mater. Trans. A 2018, 49, 4452–55.CrossRefGoogle Scholar
  21. 21.
    J. Liu, S. Yu, X. Zhu, M. Wei, Y. Luo, and Y. Liu: J. Alloys Compd., 2009, vol. 476, pp. 220–25.CrossRefGoogle Scholar
  22. 22.
    Y. Hangai, R. Yamaguchi, S. Takahashi, T. Utsunomiya, O. Kuwazuru, and N. Yoshikawa: Metall. Mater. Trans. A, 2013, 44A, 1880–86.CrossRefGoogle Scholar
  23. 23.
    H. Bayani and S.M.H. Mirbagheri: Mater. Charact., 2016, vol. 113, pp. 168–79.CrossRefGoogle Scholar
  24. 24.
    J. Kadkhodapour and S. Raeisi: Comput. Mater. Sci., 2014, vol. 83, pp. 137–48.CrossRefGoogle Scholar
  25. 25.
    M.A. Kadar, M.A. Islam, M. Saadatfar, P.J. Hazell, A.D. Brown, S. Ahmed, and J.P. Escobedo: Mater. Des., 2017, vol. 118, pp. 11–21.CrossRefGoogle Scholar
  26. 26.
    A.C. Kaya, P. Zaslansky, M. Ipekoglu, and C. Fleck: Mater. Des., 2018, vol. 143, pp. 297–308.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations