The Role of Ultrasonically Induced Acoustic Streaming in Developing Fine Equiaxed Grains During the Solidification of an Al-2 Pct Cu Alloy

  • Gui WangEmail author
  • Qiang Wang
  • Nagasivamuni Balasubramani
  • Ma Qian
  • Dmitry G. Eskin
  • Matthew S. Dargusch
  • David H. StJohn


Recent research and a simulation of heat transfer and solidification during acoustically generated convection showed that the location of the coolest liquid, and thus the place where the first grains are expected to form, is under the sonotrode. Further, the generated vigorous convection produces a very flat temperature gradient in the bulk of the melt facilitating the formation of a refined equiaxed structure throughout the casting. This study validates these findings through a series of experiments on an Al-2 wt pct Cu alloy, which evaluate grain formation under the sonotrode over time and relate this to the formation of the macrostructure of a cast ingot. Analysis of the results confirms the predictions of the simulation and shows that, for the conditions applied, most grains nucleated in the cavitation zone are swept into the melt by acoustically generated convection and, over a period of 70 seconds, the number of grains increase and they grow with spherical and globular morphology gradually filling the casting with refined equiaxed grains. It was found that the macrostructure of each casting is made up of three microstructural zones. A fine grained equiaxed zone forms from the bottom of the casting due to settling of grains during and after termination of ultrasonic treatment (UST), which increases in size with the increasing duration of UST. Above this zone, a coarse-grained structure is formed due to depletion of UST-generated grains on termination of UST. At the top of the casting, a zone of columnar grains growing from the top surface of the melt is formed. The latter two zones decrease in size with the increasing UST duration until 80 seconds, when the macrostructure consists entirely of the equiaxed zone.



The authors gratefully acknowledge the financial support from the Defence Materials Technology Center (DMTC) which was established, and supported by the Australian Government’s Defence Future Capability Technology Centres Programme, the Australian Research Council Grant DP140100702, and the ExoMet Project co-funded by the European Commission’s 7th Framework Programme (Contract FP7-NMP3-LA-2012-280421), by the European Space Agency and by the individual partner organizations.


  1. 1.
    G.I. Eskin: Ultrasonic Treatment of Light Alloy Melts, Gordon and Breach Science Publishers, Amsterdam, 1998.CrossRefGoogle Scholar
  2. 2.
    O.V. Abramov: Ultrasound in Liquid and Solid Metals, CRC press, Boca Raton, FL, 1994.Google Scholar
  3. 3.
    Eskin GI, Eskin DG (2014) Ultrasonic Treatment of Light Alloy Melts, 2nd edn. CRC Press, Boca Raton, FL, pp. 129-170CrossRefGoogle Scholar
  4. 4.
    Y. Ozawa, X. Liu, S. Takamori, H. Somekawa, and T. Mukai: Materials Transactions, 2008, vol. 49, pp. 972–975.CrossRefGoogle Scholar
  5. 5.
    T.V. Atamanenko, D.G. Eskin, L. Zhang, and L. Katgerman: Metallugical and Materials Transactions A, 2010, vol. 41, pp. 2056–2066.CrossRefGoogle Scholar
  6. 6.
    N. Srivastava, G.P. Chaudhari, M.Qian: Journal of Materials Processing Technology, 2017, vol. 249, pp. 367-378.CrossRefGoogle Scholar
  7. 7.
    H.R. Kotadia, M. Qian, D.G. Eskin, A. Das: Materials & Design, 2017, vol. 132, pp. 266-274.CrossRefGoogle Scholar
  8. 8.
    Q. Liu, Q. Zhai, F. Qi, and Y. Zha: Materials Letters, 2017, vol. 61, pp. 2422–2425.CrossRefGoogle Scholar
  9. 9.
    J. Kang, X. Zhang,Y. Hu, J. Ma, Y. Hu and T. Huang: ISIJ International, 2014, vol. 54, pp. 281–287.CrossRefGoogle Scholar
  10. 10.
    B. Nagasivamuni, G. Wang, D.H. StJohn, M.S. Dargusch: Journal of Crystal Growth, 2018, vol. 495, pp. 20-28.CrossRefGoogle Scholar
  11. 11.
    R. Chen, D. Zheng, T. Ma, H. Ding, Y. Su, J. Guo, H. Fu: Scientific Reports, 2017, vol. 7, 41463.CrossRefGoogle Scholar
  12. 12.
    D. Ensminger and L.J. Bond: Ultrasonics: Fundamentals, Technologies, and Applications, 3rd ed., CRC Press, Boca Raton, FL, 2012.Google Scholar
  13. 13.
    Juan A. Gallego-Juárez and Karl F. Graff, Power ultrasonics : applications of high-intensity ultrasound, Woodhead Publishing Ltd, Waltham, Massachusetts, 2015.Google Scholar
  14. 14.
    Y. Ishiwata, S. Komarov, and Y. Takeda: Proc. 13th Int. Conf. Alum. Alloys (ICAA13), H. Weiland, A.D. Rollett, and W.A. Cassada, eds., TMS (The Minerals, Metals & Materials Society), Warrendale, 2012, pp. 183–88.Google Scholar
  15. 15.
    G. Wang, P. Croaker, M. Dargusch, D. McGuckin and D. StJohn: Computational Materials Science, 2017, vol. 134, pp. 116-125.CrossRefGoogle Scholar
  16. 16.
    M.C. Schenker, MJBM Pourquie, D.G. Eskin, B.J. Boersma: Ultrasonics Sonochemistry, 2013, vol. 20, pp. 502–509.CrossRefGoogle Scholar
  17. 17.
    G.S.B. Lebon, G. Salloum-Abou-Jaoude, D. Eskin, I. Tzanakis, K. Pericleous, P. Jarry: Ultrasonics Sonochemistry, 2019, vol. 54, pp. 171–182.CrossRefGoogle Scholar
  18. 18.
    G.S.B. Lebon, I. Tzanakis, K. Pericleous, D. Eskin, P.S. Grant: Ultrasonics Sonochemistry, 2019, vol. 55, pp.243-255.CrossRefGoogle Scholar
  19. 19.
    T. Yamamoto and S. Komarov: Light Metals, 2019, pp. 1527–31.
  20. 20.
    G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, and D.H. StJohn: Journal of Crystals Growth, 2014, vol. 408, pp. 119–124.CrossRefGoogle Scholar
  21. 21.
    G. Wang, M.S. Dargusch, M. Qian, D.G. Eskin, and D.H. StJohn: Advanced Engineering Materials, 2018, 1800521, pp. 1–12.Google Scholar
  22. 22.
    J. Lighthill: Journal of Sound Vibration, 1978, vol. 61, pp. 391–418.CrossRefGoogle Scholar
  23. 23.
    D.H. StJohn, A. Prasad, M.A. Easton, M. Qian: Metallurical and Materials Transactions A, 2015, vol. 46, pp. 4868–4885.CrossRefGoogle Scholar
  24. 24.
    G. Chai, L. Backerud, T. Rolland, L. Arnberg: Metallurical and Materials Transactions A, 1995, vol. 26, pp. 965- 976.CrossRefGoogle Scholar
  25. 25.
    T. Sumitomo, D.H. StJohn, T. Steinberg: Materials Science and Engineering A, 2000, vol. 289, pp. 18-19.CrossRefGoogle Scholar
  26. 26.
    B. Nagasivamuni, G. Wang, D.H. StJohn, and M.S. Dargusch: in Light Met. 2019, Light Met. Symp., TMS Annu. Meet. Exhib., C. Chesonis, ed., San Antonio, TX, 10–14 March 2019, pp. 1579–86.Google Scholar
  27. 27.
    J. Hutt & D. StJohn: International Journal of Cast Metals Research, 1998, vol. 11, pp. 13-22.CrossRefGoogle Scholar
  28. 28.
    A. Ohno: The Solidification of Metals, Chijin Shokan Co., Tokyo, 1976.Google Scholar
  29. 29.
    A.Ohno: Solidification - The Separation Theory and its Practical Applications, Springer-Verlag, Berlin Heidelberg New York London Paris Tokyo, 1987Google Scholar
  30. 30.
    Z. Yin, D. Liang, Y. Chen, Y. Cheng, Q. Zhai: Trans. Nonferrous Metals Soc. China, 2013, vol. 23, pp. 92–97.CrossRefGoogle Scholar
  31. 31.
    Y.J. Li, W.Z. Tao, Y.S. Yang: J. Mater. Process. Technol., 2012, vol. 212, pp. 903–909.CrossRefGoogle Scholar
  32. 32.
    I. Tzanakis, G.S.B Lebon, D. Eskin, K. Pericleous: Ultrasonics Sonochemistry, 2017, vol. 34, pp. 651–662.CrossRefGoogle Scholar
  33. 33.
    S.D. McDonald, K. Nogita, A.K. Dahle: Acta Materitalia, 2004, vol. 52, pp. 4273-4280.CrossRefGoogle Scholar
  34. 34.
    J. Hirsch, B. Skrotzki, G. Gottstein: Aluminium Alloys: Their Physical and Mechanical Properties (ICAA11), Wiley-VCH, Weinheim, 2008, pp. 316–320.Google Scholar
  35. 35.
    A. Prasad, E. Liotti, S.D. McDonald, K. Nogita, H. Yasuda, P.S. Grant and D.H. StJohn: IOP Conference Series: Materials Science And Engineering, 2015, vol. 84, 012014, pp. 1-9.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Gui Wang
    • 1
    • 2
    Email author
  • Qiang Wang
    • 1
    • 3
  • Nagasivamuni Balasubramani
    • 1
  • Ma Qian
    • 4
  • Dmitry G. Eskin
    • 5
    • 6
  • Matthew S. Dargusch
    • 1
    • 2
  • David H. StJohn
    • 1
    • 2
  1. 1.Centre for Advanced Materials Processing and ManufacturingThe University of QueenslandSt LuciaAustralia
  2. 2.Defence Materials Technology Centre (DMTC)The University of QueenslandSt LuciaAustralia
  3. 3.School of Metallurgical EngineeringXi’an University of Architecture and TechnologyXi’anChina
  4. 4.Centre of Additive Manufacturing, School of EngineeringRMIT UniversityMelbourneAustralia
  5. 5.Brunel Centre for Advanced Solidification Technology (BCAST)Brunel University LondonUxbridgeUK
  6. 6.Tomsk State UniversityTomskRussia

Personalised recommendations