Advertisement

Pulse Plating of Ni-W-B Coating and Study of Its Corrosion and Wear Resistance

  • Mir Ghasem HosseiniEmail author
  • Somayeh Ahmadiyeh
  • Ali Rasooli
  • Shahin Khameneh-asl
Article
  • 10 Downloads

Abstract

The aim of the current study is to optimize some of the principal parameters to achieve smooth Ni-W-B alloys with high corrosion resistance and wear properties. The pulse plating method was used for preparing Ni-W-B coatings, and the effects of the pulse duty cycle and applied current density on the electrochemical and mechanical properties of the coatings were evaluated. Field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and the Vickers microhardness (HV) tester were applied to investigate the morphology, roughness and hardness of the prepared coatings. The composition and phases of coatings were analyzed by energy dispersive spectroscopy (EDS), an inductively coupled plasma-optical emission spectrometer (ICP-OES) and X-ray diffraction (XRD). For exploring the corrosion behavior of the coatings, the open circuit potential (OCP), potentiodynamic polarization (Tafel) and electrochemical impedance spectroscopy (EIS) were used. Wear behavior of coatings was studied with the pin-on-disk method. The coating grain size was increased from 17 up to 29 nm by raising the average current density from 10 to 70 mA/cm2 because of the decreasing boron content. At the pulse duty cycle of 20 pct, the high hardness of 905 HV was displayed at the current density of 10 mA/cm2, which contains the maximum amount of boron (12.9 at. pct). In addition, raising the current density (from 10 to 70 mA/cm2) and reducing the duty cycle from 80 down to 20 pct gave rise to the reduction of surface roughness and the addition of tungsten content from 29.3 to 40.4 wt pct in the matrix. These effects improve corrosion resistances of coatings so that at the pulse duty cycle of 20 pct, by increasing the average current density from 10 to 70 mA/cm2, the corrosion current density declines from 9.8 to 2.1 µA/cm2 and the charge transfer raises from 3.1 to 20.4 KΩ cm2. Improvement of wear resistance observed by raising the plating current density could be related to the smoother surface and less brittle nature of coatings. The coating wear resistance improves with increasing plating current density up to 70 mA/cm2, seen in the reduction of the wear weight loss (from 1.1 to 0.41 mg/cm2) and friction coefficient (from 0.71 to 0.42).

Notes

Acknowledgments

The financial support of this work (96002161) by the Office of Vice Chancellor in Charge of Research of the University of Tabriz is gratefully acknowledged.

References

  1. 1.
    S. Khameneh-asl, A. Farzaneh, H.Teymourinia, O. Mermer and M. G. Hosseini, RSC Advances 2016, vol. 6, pp. 78774-78783.CrossRefGoogle Scholar
  2. 2.
    Amir Farzaneh, Mir Ghasem Hosseini, Shahin Khameneh Asl and Omer Mermer, Int. J. Electrochem. Sci 2016, vol. 11, pp. 5140-5153.CrossRefGoogle Scholar
  3. 3.
    S.I. Ghazanlou, S Ahmadiyeh and Yavari, Surface Engineering 2017, vol. 33, pp. 337–347.CrossRefGoogle Scholar
  4. 4.
    M. G. Hosseini, M. Abdolmaleki and J. Ghahremani, Corrosion Engineering, Science and Technology 2013, vol. 49, pp. 247-253.CrossRefGoogle Scholar
  5. 5.
    H. S. Maharana, Akarapu Ashok, S. Pal and A. Basu, Metallurgical and Materials Transactions A 2016, vol. 47, pp. 388-399.CrossRefGoogle Scholar
  6. 6.
    M.G. Hosseini, H. Teymorinia, A. Farzaneh and S. Khameneh-asl, surface & coating Tech 2016, vol. 298, pp. 114-120.CrossRefGoogle Scholar
  7. 7.
    S.Sangeetha, G. Paruthimal Kalaignan and J. Tennis Anthuvan, Applied Surface Science 2016, vol. 359, pp. 412-419.CrossRefGoogle Scholar
  8. 8.
    Siavash Imanian Ghazanlou, A. H. S. Farhood, Sahand Hosouli, Somayeh Ahmadiyeh and Ali Rasooli, Journal of Materials Science: Materials in Electronics 2017, vol. 28, pp. 15537-15551.Google Scholar
  9. 9.
    M. Aliofkhazraei M.H. Allahyarzadeh, A.R. Sabour Rouhaghdam, V. Torabinejad, Alloys and Compounds 2016, vol. 666, pp. 217-226.CrossRefGoogle Scholar
  10. 10.
    Ghazanlou SI, Farhood AHS, Hosouli S, Ahmadiyeh S, Rasooli A (2017) Mater Manuf Process 1:1.  https://doi.org/10.1080/10426914.2017.1364748.Google Scholar
  11. 11.
    S. Mohajeri, A. Dolati and M. Ghorbani, Surface and Coatings Technology 2015, vol. 262, pp. 173-183.CrossRefGoogle Scholar
  12. 12.
    Ghazanlou SI, Farhood AHS, Ahmadiyeh S, Ziyaei E, Rasooli A, Hosseinpour S (2019) Metall. Mater. Trans. A 50:1922-1935.CrossRefGoogle Scholar
  13. 13.
    Yuttanant Boonyongmaneerat, Kanokwan Saengkiettiyut, Sawalee Saenapitak and Supin Sangsuk, Surface and Coatings Technology 2009, vol. 203, pp. 3590-3594.CrossRefGoogle Scholar
  14. 14.
    Othon R. Monteiro, Sankaran Murugesan and Valery Khabashesku, Surface and Coatings Technology 2015, vol. 272, pp. 291-297.CrossRefGoogle Scholar
  15. 15.
    Shetty S, Hegde AC (2017) Metall. Mater. Trans. B 48:632-641.CrossRefGoogle Scholar
  16. 16.
    Hosseini MG, Abdolmaleki M, Boroujeni MRSA, Sadjadi S, Arshadi MR, Khoshvaght H (2009) Surf. Eng. 25:382–388.CrossRefGoogle Scholar
  17. 17.
    Shuai Liu, Wei Zhou, Tao Yu, Ruijie Chai, Liming Lu and Renhe Yin, Fuel 2014, vol. 134, pp. 151-158.CrossRefGoogle Scholar
  18. 18.
    Weiyan Wang, Yunquan Yang, Hean Luo, Huizuo Peng, Bing He and Wenying Liu, Catalysis Communications 2011, vol. 12, pp. 1275-1279.CrossRefGoogle Scholar
  19. 19.
    Gretchen Graef, Ken Anderson, Joanna Groza and Ahmet Palazoglu, Materials Science and Engineering: B 1996, vol. 41, pp. 253-257.CrossRefGoogle Scholar
  20. 20.
    Zhongcheng Guo and Xiaoyun Zhu, Materials Science and Engineering: A 2003, vol. 363, pp. 325-329.CrossRefGoogle Scholar
  21. 21.
    Cao Gangmin, Yang Fangzu, Huang Ling, Niu Zhenjiang, Xu Shukai and Zhou Shaomin, The International Journal of Surface Engineering and Coatings 2017, vol. 79, pp. 81-84.Google Scholar
  22. 22.
    F.Z. Yang, Z.H. Ma, L. Huang, S.K. Xu and S.M. Zhou, Chinese Journal of Chemistry 2006, vol. 24, pp. 114–118.CrossRefGoogle Scholar
  23. 23.
    Arkadeb Mukhopadhyay, Tapan Kumar Barman and Prasanta Sahoo, Materials Today: Proceedings 2018, vol. 5, pp. 3306-3315.CrossRefGoogle Scholar
  24. 24.
    Hosseini MG, Abdolmaleki M, Ebrahimzadeh H, Sadjadi SA (2011) Electrochem. Sci. 6:1189–1205.Google Scholar
  25. 25.
    Hosseini MG, Abdolmaleki M, SeyedSadjadi SA (2010) Protection of Metals and Physical Chemistry of Surfaces 46:117–122.CrossRefGoogle Scholar
  26. 26.
    C. P. Steffani, J. W. Dint, J. R. Groza and A. Palazoglu, Journal of Materials Engineering and Performance 1997, vol. 6, pp. 413-416.CrossRefGoogle Scholar
  27. 27.
    Taichi Nagai, Kazunori Hodouchi and Hiroshi Matsubara, Surface and Coatings Technology 2014, vol. 253, pp. 109-114.CrossRefGoogle Scholar
  28. 28.
    Junli Wang, Ruidong Xu and Yuzhi Zhang, Journal of Rare Earths 2012, vol. 30, pp. 43-47.CrossRefGoogle Scholar
  29. 29.
    R. A. C. Santana, S. Prasad, A. R. N. Campos, F. O. Araújo, G. P. da Silva and P. de Lima-Neto, Journal of Applied Electrochemistry 2006, vol. 36, pp. 105-113.CrossRefGoogle Scholar
  30. 30.
    Jiaqian Qin, Xinyu Zhang, Kamontorn Umporntheep, Vasin Auejitthavorn, Rongxia Li, Panyawat Wangyao, Yuttanant Boonyongmaneerat, Sarintorn Limpanart, Mingzhen Ma and Riping Liu, Int. J. Electrochem. Sci. 2016, vol. 11, pp. 9529 – 9541.CrossRefGoogle Scholar
  31. 31.
    Komsak Harachai, Jiaqian Qin, Yuttanant Boonyongmaneerat and Papot Jaroenapibal, Key Engineering Materials 2019, vol. 801, pp. 166-171.CrossRefGoogle Scholar
  32. 32.
    A. B. Drovosekov, M. V. Ivanov, V. M. Krutskikh, E. N. Lubnin and Yu. M. Polukarov, Protection of Metals 2005, vol. 41, pp. 55-62.CrossRefGoogle Scholar
  33. 33.
    S. Murugesan, O.R. Monteiro and V. Khabashesku, CORROSION 2017, NACE International: New Orleans, Louisiana, 2017, p 9.Google Scholar
  34. 34.
    V. M. Krutskikh, A. B. Drovosekov and M. V. Ivanov, Russian Journal of Electrochemistry 2016, vol. 52, pp. 873-884.CrossRefGoogle Scholar
  35. 35.
    L. Zhu, Q. Zhong and J. Liu, Plating and Surface Finishing 2000, vol. 87, pp. 74-77.Google Scholar
  36. 36.
    V. A. Arslambekov, E. N. Loubnin, M. V. Ivanov, A. B. Drovosekov and V. M. Krutskikh, Protection of Metals 2004, vol. 40, pp. 153-158.CrossRefGoogle Scholar
  37. 37.
    Sangeetha S, Paruthimal Kalaignan G (2015) Ceramics International 41:10415-10424.CrossRefGoogle Scholar
  38. 38.
    Allahyarzadeh MH, Aliofkhazraei M, Rezvanian AR, Torabinejad V, SabourRouhaghdam AR (2016) Surface and Coatings Technology 307:978–1010.CrossRefGoogle Scholar
  39. 39.
    Sriraman KR, Raman S, Seshadri SK (2007) Materials Science and Engineering: A 460–461:39-45.CrossRefGoogle Scholar
  40. 40.
    Kumar K, Kalaignan G, Muralidharan VS (2012) Applied Surface Science 259:231-237.CrossRefGoogle Scholar
  41. 41.
    Elias L, Hegde AC (2015) Surface and Coatings Technology 283:61-69.CrossRefGoogle Scholar
  42. 42.
    Oliveira ALM, Costa JD, de Sousa MB, Alves JJN, Campos ARN, Alexandre R, Santana C, Prasad S (2015) J. Alloys Compd. 619:697–703.CrossRefGoogle Scholar
  43. 43.
    Yang Fang‐Zu, Ma Zhao‐Hai, Huang Ling, Xu Shu-Kai and Zhou Shao-Min, Chinese Journal of Chemistry 2006, vol. 24, pp. 114-118.CrossRefGoogle Scholar
  44. 44.
    Yu N. Bekish, S. K. Poznyak, L. S. Tsybulskaya and T. V. Gaevskaya, Electrochimica Acta 2010, vol. 55, pp. 2223-2231.CrossRefGoogle Scholar
  45. 45.
    Sivasakthi P, Sekar R, RameshBapu GNK (2015) Materials Research Bulletin 70:832-839.CrossRefGoogle Scholar
  46. 46.
    F. Nasirpouri, M. R. Sanaeian, A. S. Samardak, E. V. Sukovatitsina, A. V. Ognev, L. A. Chebotkevich, M. G. Hosseini and M. Abdolmaleki, Applied Surface Science 2014, vol. 292, pp. 795-805.CrossRefGoogle Scholar
  47. 47.
    Chandrasekar MS, Pushpavanam M (2008) Electrochimica Acta 53:3313-3322.CrossRefGoogle Scholar
  48. 48.
    QuirogaArgañaraz MP, Ribotta SB, Folquer ME, Gassa LM, Benítez G, Vela ME, Salvarezza RC (2011) Electrochimica Acta 56:5898–5903.CrossRefGoogle Scholar
  49. 49.
    Ramazan Karslioglu and Hatem Akbulut, Applied Surface Science 2015, vol. 353, pp. 615-627.CrossRefGoogle Scholar
  50. 50.
    Torabinejad V, Aliofkhazraei M, SabourRouhaghdam A, Allahyarzadeh MH (2016) Journal of Materials Engineering and Performance 25:5494–5501.CrossRefGoogle Scholar
  51. 51.
    Gülesin Yılmaz, Gökçe Hapçı and Gökhan Orhan, Journal of Materials Engineering and Performance 2015, vol. 24, pp. 709-720.CrossRefGoogle Scholar
  52. 52.
    N. Elkhoshkhany, Ahmed Hafnway and Alaa Khaled, Journal of Alloys and Compounds 2017, vol. 695, pp. 1505-1514.CrossRefGoogle Scholar
  53. 53.
    H. Alimadadi, M. Ahmadi, M. Aliofkhazraei and S. R. Younesi, Materials & Design 2009, vol. 30, pp. 1356-1361.CrossRefGoogle Scholar
  54. 54.
    Singh S, Sribalaji M, Wasekar NP, Joshi S, Sundararajan G, Singh R, Keshri AK (2016) Applied Surface Science 364:264-272.CrossRefGoogle Scholar
  55. 55.
    Amnuaysak Chianpairot, Gobboon Lothongkum, Christopher A. Schuh and Yuttanant Boonyongmaneerat, Corrosion Science 2011, vol. 53, pp. 1066-71.CrossRefGoogle Scholar
  56. 56.
    Serkan Özkan, Gökçe Hapçı, Gökhan Orhan and Kürşat Kazmanlı, Surface and Coatings Technology 2013, vol. 232, pp. 734-741.CrossRefGoogle Scholar
  57. 57.
    Dhananjay Pradhan, Girija Shankar Mahobia, Kausik Chattopadhyay and Vakil Singh, Journal of Alloys and Compounds 2018, vol. 740, pp. 250-263.CrossRefGoogle Scholar
  58. 58.
    Zeynab Mahidashti, Mahmood Aliofkhazraei and Naser Lotfi, Transactions of the Indian Institute of Metals 2018, vol. 71, pp. 257-295.CrossRefGoogle Scholar
  59. 59.
    Allahyarzadeh MH, Aliofkhazraei M, SabourRouhaghdam AR, Torabinejad V (2016) Canadian Metallurgical Quarterly 55:303–311.CrossRefGoogle Scholar
  60. 60.
    M. Allahyarzadeh, M. Aliofkhazraei, A. S. Rouhaghdam and V. Torabinejad, Surface Engineering 2017, vol. 33, pp. 327-336.CrossRefGoogle Scholar
  61. 61.
    J. Druga, M. Kašiarová, E. Dobročka and M. Zemanová, Transactions of the IMF 2017, vol. 95, pp. 39-45.CrossRefGoogle Scholar
  62. 62.
    K. H. Lee, D. Chang and S. C. Kwon, Electrochimica Acta 2005, vol. 50, pp. 4538-4543.CrossRefGoogle Scholar
  63. 63.
    Ahmadiyeh S, Rasooli A, Hosseini MG (2018) Surface Engineering 35:861–872.CrossRefGoogle Scholar
  64. 64.
    M. Tafreshi, S. R. Allahkaram and H. Farhangi, Materials Chemistry and Physics 2016, vol. 183, pp. 263-272.CrossRefGoogle Scholar
  65. 65.
    A. Mazurek, G. Cieślak, W. Bartoszek and M. Trzaska, Archives of Materials Science and Engineering 2017 vol. 87, pp. 21-26.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Mir Ghasem Hosseini
    • 1
    • 2
    Email author
  • Somayeh Ahmadiyeh
    • 3
  • Ali Rasooli
    • 3
  • Shahin Khameneh-asl
    • 3
  1. 1.Electrochemistry Research Laboratory, Department of Physical Chemistry, Chemistry FacultyUniversity of TabrizTabrizIran
  2. 2.Engineering Faculty, Department of Materials Science and NanotechnologyNear East UniversityNicosiaTurkey
  3. 3.Department of Materials Engineering, Faculty of Mechanical EngineeringUniversity of TabrizTabrizIran

Personalised recommendations