Advertisement

Influence of In Situ Thermal Processing Strategies on the Weldability of Martensitic Stainless Steel Resistance Spot Welds: Effect of Second Pulse Current on the Weld Microstructure and Mechanical Properties

  • Hamidreza Aghajani
  • Majid PouranvariEmail author
Article
  • 21 Downloads

Abstract

Martensitic stainless steel (MSS) welds are notorious for their susceptibility to low-energy failure due to the formation of brittle martensitic structure in the fusion zone. The unique approach to enhance the mechanical properties of MSS resistance spot welds during both the tensile-shear and the cross-tension loading is to improve the fracture toughness of the fusion zone. In the present study, the effect of double-pulse welding on the microstructure-mechanical properties relationship of the AISI420 MSS resistance spot welds is investigated. Depending on the second pulse current level, various metallurgical phenomena was observed including (i) rapid tempering of martensite in the fusion zone featured by hardness reduction and precipitation of nano-sized carbide precipitates which resulted in remarkable improvement of the load-bearing capacity and energy absorption capability of the welds, (ii) re-austenitization of the fusion zone and reformation of the un-tempered martensite without improvement of the weld mechanical properties, (iii) temper embrittlement of the nugget edge which resulted in very low-energy grain-boundary failure, and (iv) nugget edge re-melting/enlargement which resulted in slight improvement of weld mechanical properties. Therefore, to enhance the mechanical properties of the MSS resistance spot welds using a two-pulse welding strategy, the second pulse parameters should be precisely controlled.

Notes

References

  1. 1.
    1.J. C. Lippold, D. J. Kotecki: Welding metallurgy and weldability of stainless steels, John Wiley & Sons, New Jersey, NJ, 2005, pp. 56-86.Google Scholar
  2. 2.
    2.H. Karbasian and A.E. Tekkaya: J. Mater. Process. Technol., 2010, vol. 210, pp. 2103–18.CrossRefGoogle Scholar
  3. 3.
    Max: Martensitic Stainless Steel for Hot Stamping, Aperam, 2015. http://www.aperam.com.
  4. 4.
    P. Santacreu, G. Badinier, J. Moreau and J. Herbelin: SAE Technical Paper, 2015. SAE International, WarrendaleGoogle Scholar
  5. 5.
    J.D. Mithieux, G. Badinier, P.O. Santacreu, J.M. Herbelin and V. Kostoj: Proceedings of the 4th International Conference Hot Sheet Metal Forming of High performance Steel CHS2, June 9–12, Luleå, Sweden, 2013, pp. 57–65.Google Scholar
  6. 6.
    D. S. Codd: SAE International, 2011. SAE Technical Paper, 2011. SAE International, WarrendaleGoogle Scholar
  7. 7.
    7.V. J. Badheka, S. K. Agrawal, N. Shroff, Int J Mech Mater Eng, 2009, vol.4, pp.328-340.Google Scholar
  8. 8.
    H. K. D. H. Bhadeshia and R. Honeycombe (2017) Steels: microstructure and properties, 4th edn. Butterworth-Heinemann, Oxford. pp. 237-70.CrossRefGoogle Scholar
  9. 9.
    9.G. R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043-54.CrossRefGoogle Scholar
  10. 10.
    10.S.K. Bhambri: J. Mater.Sci., 1986, vol. 21, pp. 1741-46.CrossRefGoogle Scholar
  11. 11.
    11.A.N. Isfahany, H. Saghafian and G. Borhani: J. Alloy. Compd., 2011, vol. 509, pp. 3931-36.CrossRefGoogle Scholar
  12. 12.
    K. Chandra, V. Kain, N. Srinivasan, I. Samajdar and A.K. Balasubrahmanian: Adv. Mater. Res., 2013, vol. 794, pp. 757-765.CrossRefGoogle Scholar
  13. 13.
    13.H. Sharifi, I. Kheirollahi-Hosseinabadi and R. Ghasemi: International Journal of ISSI, 2015, vol. 12, pp. 9-15.Google Scholar
  14. 14.
    14.Ph. Lemble, A. Pineau, J.L. Castagne, Ph. Dumoulin and M. Guttmann: Metal. Sci., 1979, vol. 13, pp. 496-502.CrossRefGoogle Scholar
  15. 15.
    G.V.P. Gaunkar, A.M. Huntz and P. Lacombe: Metal. Sci., 1980, vol. 14, pp. 241-52.CrossRefGoogle Scholar
  16. 16.
    M. Sheikhi, M. ValaeeTale, GH.R. Usefifar and A. Fattah-Alhosseini (2017) Metall. Trans. A, vol. 48, pp. 5415–23.CrossRefGoogle Scholar
  17. 17.
    17.N.D. Raath, D. Norman, I. Mcgregor, S. Hepple, R. Dashwood and D.J. Hughes: Metall. Trans. A, 2018, vol. 49, pp. 1536–51.CrossRefGoogle Scholar
  18. 18.
    18.P. Eftekharmilani, E.M. Van der Aa, R. Petrov, M.J.M. Hermans and I.M. Richardson: Metall. Trans. A, 2018, vol. 49, pp. 6185-96.CrossRefGoogle Scholar
  19. 19.
    M. Kimchi and D. H. Phillips (2018) Resistance Spot Welding: Fundamentals and Applications for the Automotive Industry. Morgan & Claypool, Williston. pp. 27-46Google Scholar
  20. 20.
    20.S.S. Beni, M. Atapour, M.R. Salmani and R. Ashiri: Metall. Trans. A, 2019, vol. 50, pp. 2218-34.CrossRefGoogle Scholar
  21. 21.
    21.H. Zhang and J. Senkara: Resistance welding: fundamentals and applications, 2006, Taylor & Francis CRC Press, Boca Raton, pp. 19-57.Google Scholar
  22. 22.
    22.N. T. Williams and J. D. Parker: International Materials Reviews, 2004, vol. 49, pp. 45-75.CrossRefGoogle Scholar
  23. 23.
    23.M. Pouranvari, S. P. H. Marashi: Sci. Technol. Weld. Join., 2013, vol. 18, pp. 361-403.CrossRefGoogle Scholar
  24. 24.
    24.M. Pouranvari: Mater. Sci. Technol.., 2017, vol. 33, pp. 1705-12.CrossRefGoogle Scholar
  25. 25.
    25.V.J. Badheka, S. K. Agrawal and N. Shroff: International Journal of Mechanical and Materials Engineering (IJMME), 2009, vol. 5, pp. 43-52.Google Scholar
  26. 26.
    26.M. Alizadeh-Sh, S. P. H. Marashi and M. Pouranvari: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 595-602.CrossRefGoogle Scholar
  27. 27.
    27.M. Pouranvari: Mater. Sci. Eng. A, 2017, vol. 680, pp. 97-107.CrossRefGoogle Scholar
  28. 28.
    28.M. Pouranvari and E. Safikhani: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 227-33.CrossRefGoogle Scholar
  29. 29.
    29.H. Aghajani and M. Pouranvari: Sci. Technol. Weld. Join., 2019, vol. 24, pp. 185-192.CrossRefGoogle Scholar
  30. 30.
    30.M. Pouranvari: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 520-26.CrossRefGoogle Scholar
  31. 31.
    31.W. L. Chuko and J. E. Gould: Weld. J., 2002, vol. 81, pp. 1 s-7 s.Google Scholar
  32. 32.
    V.H.B. Hernandez, Y. Okita and Y. Zhou: Weld J, 2012, vol. 91, pp. 278-85.Google Scholar
  33. 33.
    G. Shi and SA. Westgate: TWI report, 2005. TWI, CambridgeGoogle Scholar
  34. 34.
    34.S. Sajjadi-Nikoo, M. Pouranvari, A. Abedi and A. A. Ghaderi: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 71-78.CrossRefGoogle Scholar
  35. 35.
    35.F. Nikoosohbat, Sh. Kheirandish, M. Goodarzi and M. Pouranvari: Mater. Technol., 2015, vol. 49, pp. 133–38.Google Scholar
  36. 36.
    36.C. Sawanishi, T. Ogura and K. Taniguchi: Sci. Technol. Weld. Join., 2014, vol. 19, pp. 52–59.CrossRefGoogle Scholar
  37. 37.
    E.M. Van der Aa, M. Amirthalingam, J. Winter, D.N. Hanlon, M.J.M. Hermans, M. Rijnders, and I.M. Richardson (2015) Mathematical Modelling of Welding Phonomena 11. Verlag der Technischen Universität Graz, Graz. pp. 175–93.Google Scholar
  38. 38.
    38.P. Eftekharimilani, E.M. van der Aa, M.J.M. Hermans and I.M. Richardson: Sci. Technol. Weld. Join., 2017, vol. 22, pp. 545–54.CrossRefGoogle Scholar
  39. 39.
    T. Koichi, O. Yasuaki and R. Ikeda: JFE Technical Report, 2015, pp. 85–91.Google Scholar
  40. 40.
    40.O. Martín, M. Pereda, J. I. Santos and J. M. Galán: J. Mater. Process. Technol., 2014, vol. 214, pp. 2478-87.CrossRefGoogle Scholar
  41. 41.
    41.S. Kou: Welding metallurgy, 2nd ed, 2003, John Wiley & Sons, Inc., New Jersey, NJ, pp. 431-453.Google Scholar
  42. 42.
    42.W. Chuko and J.E. Gould: Report to the American Iron and Steel Institute, U.S. Department of Energy, 2002.Google Scholar
  43. 43.
    43.M. Pouranvari, M. Alizadeh-Sh and S.P.H. Marashi: Sci. Technol. Weld. Join., 2015, vol. 20, pp. 502-11.CrossRefGoogle Scholar
  44. 44.
    44.J.E. Gould, S.P. Khurana and T. Li: Weld. J., 2006, vol.85, pp. 111 s-116 s.Google Scholar
  45. 45.
    45.W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol.183, pp.349–359.Google Scholar
  46. 46.
    Recommended practices for test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials. AWS/SAE D8.9 M: 2012.Google Scholar
  47. 47.
    47.J. C. Lippold: Welding metallurgy and weldability, John Wiley & Sons, New Jersey, NJ, 2015.CrossRefGoogle Scholar
  48. 48.
    48.L.F. Alvarez, C. Garcia and V. Lopez: ISIJ Int., 1994, vol. 34, pp. 516-21.CrossRefGoogle Scholar
  49. 49.
    49.I. Yadroitsev, P. Krakhmalev and I. Yadroitsava: Addit. Manuf., 2015, vol. 7, pp. 45-56.CrossRefGoogle Scholar
  50. 50.
    50. J. C. Lippold: J. Nuclear Materials 103&104, 1981, pp. 1127-32.CrossRefGoogle Scholar
  51. 51.
    51. H. Matsuda, R. Mizuno, Y. Funakawa, K. Seto, S. Matsuoka and Y. Tanaka: J. Alloy. Compd., 2013, vol. 577, pp. S661-67.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations